diff --git a/README.md b/README.md
index 9317147dec36450c5d0dccb12ffba12840718697..46b9e770ed79ca2dd8022e38347dced7eb6fad69 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,8 @@
 # WebGL Tutorial
 
-2021-1 Computer Graphics Final Project
\ No newline at end of file
+2021-1 Computer Graphics Final Project
+
+# Reference
+[https://github.com/hwan-ajou/webgl-1.0/blob/main/T09_per-fragment/index.html](https://github.com/hwan-ajou/webgl-1.0/blob/main/T09_per-fragment/index.html)
+[https://github.com/hwan-ajou/webgl-1.0/blob/main/T09_per-fragment/T09.js](https://github.com/hwan-ajou/webgl-1.0/blob/main/T09_per-fragment/T09.js)
+[https://glmatrix.net/docs/module-mat4.html](https://glmatrix.net/docs/module-mat4.html)
diff --git a/gl-matrix.js b/gl-matrix.js
new file mode 100644
index 0000000000000000000000000000000000000000..4553f9ea44878e9b79894c1de08af95ea9814317
--- /dev/null
+++ b/gl-matrix.js
@@ -0,0 +1,7611 @@
+
+/*!
+@fileoverview gl-matrix - High performance matrix and vector operations
+@author Brandon Jones
+@author Colin MacKenzie IV
+@version 3.3.0
+
+Copyright (c) 2015-2020, Brandon Jones, Colin MacKenzie IV.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
+
+*/
+(function (global, factory) {
+  typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
+  typeof define === 'function' && define.amd ? define(['exports'], factory) :
+  (global = global || self, factory(global.glMatrix = {}));
+}(this, (function (exports) { 'use strict';
+
+  /**
+   * Common utilities
+   * @module glMatrix
+   */
+  // Configuration Constants
+  var EPSILON = 0.000001;
+  var ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;
+  var RANDOM = Math.random;
+  /**
+   * Sets the type of array used when creating new vectors and matrices
+   *
+   * @param {Float32ArrayConstructor | ArrayConstructor} type Array type, such as Float32Array or Array
+   */
+
+  function setMatrixArrayType(type) {
+    ARRAY_TYPE = type;
+  }
+  var degree = Math.PI / 180;
+  /**
+   * Convert Degree To Radian
+   *
+   * @param {Number} a Angle in Degrees
+   */
+
+  function toRadian(a) {
+    return a * degree;
+  }
+  /**
+   * Tests whether or not the arguments have approximately the same value, within an absolute
+   * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less
+   * than or equal to 1.0, and a relative tolerance is used for larger values)
+   *
+   * @param {Number} a The first number to test.
+   * @param {Number} b The second number to test.
+   * @returns {Boolean} True if the numbers are approximately equal, false otherwise.
+   */
+
+  function equals(a, b) {
+    return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));
+  }
+  if (!Math.hypot) Math.hypot = function () {
+    var y = 0,
+        i = arguments.length;
+
+    while (i--) {
+      y += arguments[i] * arguments[i];
+    }
+
+    return Math.sqrt(y);
+  };
+
+  var common = /*#__PURE__*/Object.freeze({
+    __proto__: null,
+    EPSILON: EPSILON,
+    get ARRAY_TYPE () { return ARRAY_TYPE; },
+    RANDOM: RANDOM,
+    setMatrixArrayType: setMatrixArrayType,
+    toRadian: toRadian,
+    equals: equals
+  });
+
+  /**
+   * 2x2 Matrix
+   * @module mat2
+   */
+
+  /**
+   * Creates a new identity mat2
+   *
+   * @returns {mat2} a new 2x2 matrix
+   */
+
+  function create() {
+    var out = new ARRAY_TYPE(4);
+
+    if (ARRAY_TYPE != Float32Array) {
+      out[1] = 0;
+      out[2] = 0;
+    }
+
+    out[0] = 1;
+    out[3] = 1;
+    return out;
+  }
+  /**
+   * Creates a new mat2 initialized with values from an existing matrix
+   *
+   * @param {ReadonlyMat2} a matrix to clone
+   * @returns {mat2} a new 2x2 matrix
+   */
+
+  function clone(a) {
+    var out = new ARRAY_TYPE(4);
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    return out;
+  }
+  /**
+   * Copy the values from one mat2 to another
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {ReadonlyMat2} a the source matrix
+   * @returns {mat2} out
+   */
+
+  function copy(out, a) {
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    return out;
+  }
+  /**
+   * Set a mat2 to the identity matrix
+   *
+   * @param {mat2} out the receiving matrix
+   * @returns {mat2} out
+   */
+
+  function identity(out) {
+    out[0] = 1;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 1;
+    return out;
+  }
+  /**
+   * Create a new mat2 with the given values
+   *
+   * @param {Number} m00 Component in column 0, row 0 position (index 0)
+   * @param {Number} m01 Component in column 0, row 1 position (index 1)
+   * @param {Number} m10 Component in column 1, row 0 position (index 2)
+   * @param {Number} m11 Component in column 1, row 1 position (index 3)
+   * @returns {mat2} out A new 2x2 matrix
+   */
+
+  function fromValues(m00, m01, m10, m11) {
+    var out = new ARRAY_TYPE(4);
+    out[0] = m00;
+    out[1] = m01;
+    out[2] = m10;
+    out[3] = m11;
+    return out;
+  }
+  /**
+   * Set the components of a mat2 to the given values
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {Number} m00 Component in column 0, row 0 position (index 0)
+   * @param {Number} m01 Component in column 0, row 1 position (index 1)
+   * @param {Number} m10 Component in column 1, row 0 position (index 2)
+   * @param {Number} m11 Component in column 1, row 1 position (index 3)
+   * @returns {mat2} out
+   */
+
+  function set(out, m00, m01, m10, m11) {
+    out[0] = m00;
+    out[1] = m01;
+    out[2] = m10;
+    out[3] = m11;
+    return out;
+  }
+  /**
+   * Transpose the values of a mat2
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {ReadonlyMat2} a the source matrix
+   * @returns {mat2} out
+   */
+
+  function transpose(out, a) {
+    // If we are transposing ourselves we can skip a few steps but have to cache
+    // some values
+    if (out === a) {
+      var a1 = a[1];
+      out[1] = a[2];
+      out[2] = a1;
+    } else {
+      out[0] = a[0];
+      out[1] = a[2];
+      out[2] = a[1];
+      out[3] = a[3];
+    }
+
+    return out;
+  }
+  /**
+   * Inverts a mat2
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {ReadonlyMat2} a the source matrix
+   * @returns {mat2} out
+   */
+
+  function invert(out, a) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3]; // Calculate the determinant
+
+    var det = a0 * a3 - a2 * a1;
+
+    if (!det) {
+      return null;
+    }
+
+    det = 1.0 / det;
+    out[0] = a3 * det;
+    out[1] = -a1 * det;
+    out[2] = -a2 * det;
+    out[3] = a0 * det;
+    return out;
+  }
+  /**
+   * Calculates the adjugate of a mat2
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {ReadonlyMat2} a the source matrix
+   * @returns {mat2} out
+   */
+
+  function adjoint(out, a) {
+    // Caching this value is nessecary if out == a
+    var a0 = a[0];
+    out[0] = a[3];
+    out[1] = -a[1];
+    out[2] = -a[2];
+    out[3] = a0;
+    return out;
+  }
+  /**
+   * Calculates the determinant of a mat2
+   *
+   * @param {ReadonlyMat2} a the source matrix
+   * @returns {Number} determinant of a
+   */
+
+  function determinant(a) {
+    return a[0] * a[3] - a[2] * a[1];
+  }
+  /**
+   * Multiplies two mat2's
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {ReadonlyMat2} a the first operand
+   * @param {ReadonlyMat2} b the second operand
+   * @returns {mat2} out
+   */
+
+  function multiply(out, a, b) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3];
+    var b0 = b[0],
+        b1 = b[1],
+        b2 = b[2],
+        b3 = b[3];
+    out[0] = a0 * b0 + a2 * b1;
+    out[1] = a1 * b0 + a3 * b1;
+    out[2] = a0 * b2 + a2 * b3;
+    out[3] = a1 * b2 + a3 * b3;
+    return out;
+  }
+  /**
+   * Rotates a mat2 by the given angle
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {ReadonlyMat2} a the matrix to rotate
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat2} out
+   */
+
+  function rotate(out, a, rad) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3];
+    var s = Math.sin(rad);
+    var c = Math.cos(rad);
+    out[0] = a0 * c + a2 * s;
+    out[1] = a1 * c + a3 * s;
+    out[2] = a0 * -s + a2 * c;
+    out[3] = a1 * -s + a3 * c;
+    return out;
+  }
+  /**
+   * Scales the mat2 by the dimensions in the given vec2
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {ReadonlyMat2} a the matrix to rotate
+   * @param {ReadonlyVec2} v the vec2 to scale the matrix by
+   * @returns {mat2} out
+   **/
+
+  function scale(out, a, v) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3];
+    var v0 = v[0],
+        v1 = v[1];
+    out[0] = a0 * v0;
+    out[1] = a1 * v0;
+    out[2] = a2 * v1;
+    out[3] = a3 * v1;
+    return out;
+  }
+  /**
+   * Creates a matrix from a given angle
+   * This is equivalent to (but much faster than):
+   *
+   *     mat2.identity(dest);
+   *     mat2.rotate(dest, dest, rad);
+   *
+   * @param {mat2} out mat2 receiving operation result
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat2} out
+   */
+
+  function fromRotation(out, rad) {
+    var s = Math.sin(rad);
+    var c = Math.cos(rad);
+    out[0] = c;
+    out[1] = s;
+    out[2] = -s;
+    out[3] = c;
+    return out;
+  }
+  /**
+   * Creates a matrix from a vector scaling
+   * This is equivalent to (but much faster than):
+   *
+   *     mat2.identity(dest);
+   *     mat2.scale(dest, dest, vec);
+   *
+   * @param {mat2} out mat2 receiving operation result
+   * @param {ReadonlyVec2} v Scaling vector
+   * @returns {mat2} out
+   */
+
+  function fromScaling(out, v) {
+    out[0] = v[0];
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = v[1];
+    return out;
+  }
+  /**
+   * Returns a string representation of a mat2
+   *
+   * @param {ReadonlyMat2} a matrix to represent as a string
+   * @returns {String} string representation of the matrix
+   */
+
+  function str(a) {
+    return "mat2(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ")";
+  }
+  /**
+   * Returns Frobenius norm of a mat2
+   *
+   * @param {ReadonlyMat2} a the matrix to calculate Frobenius norm of
+   * @returns {Number} Frobenius norm
+   */
+
+  function frob(a) {
+    return Math.hypot(a[0], a[1], a[2], a[3]);
+  }
+  /**
+   * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix
+   * @param {ReadonlyMat2} L the lower triangular matrix
+   * @param {ReadonlyMat2} D the diagonal matrix
+   * @param {ReadonlyMat2} U the upper triangular matrix
+   * @param {ReadonlyMat2} a the input matrix to factorize
+   */
+
+  function LDU(L, D, U, a) {
+    L[2] = a[2] / a[0];
+    U[0] = a[0];
+    U[1] = a[1];
+    U[3] = a[3] - L[2] * U[1];
+    return [L, D, U];
+  }
+  /**
+   * Adds two mat2's
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {ReadonlyMat2} a the first operand
+   * @param {ReadonlyMat2} b the second operand
+   * @returns {mat2} out
+   */
+
+  function add(out, a, b) {
+    out[0] = a[0] + b[0];
+    out[1] = a[1] + b[1];
+    out[2] = a[2] + b[2];
+    out[3] = a[3] + b[3];
+    return out;
+  }
+  /**
+   * Subtracts matrix b from matrix a
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {ReadonlyMat2} a the first operand
+   * @param {ReadonlyMat2} b the second operand
+   * @returns {mat2} out
+   */
+
+  function subtract(out, a, b) {
+    out[0] = a[0] - b[0];
+    out[1] = a[1] - b[1];
+    out[2] = a[2] - b[2];
+    out[3] = a[3] - b[3];
+    return out;
+  }
+  /**
+   * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
+   *
+   * @param {ReadonlyMat2} a The first matrix.
+   * @param {ReadonlyMat2} b The second matrix.
+   * @returns {Boolean} True if the matrices are equal, false otherwise.
+   */
+
+  function exactEquals(a, b) {
+    return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
+  }
+  /**
+   * Returns whether or not the matrices have approximately the same elements in the same position.
+   *
+   * @param {ReadonlyMat2} a The first matrix.
+   * @param {ReadonlyMat2} b The second matrix.
+   * @returns {Boolean} True if the matrices are equal, false otherwise.
+   */
+
+  function equals$1(a, b) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3];
+    var b0 = b[0],
+        b1 = b[1],
+        b2 = b[2],
+        b3 = b[3];
+    return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));
+  }
+  /**
+   * Multiply each element of the matrix by a scalar.
+   *
+   * @param {mat2} out the receiving matrix
+   * @param {ReadonlyMat2} a the matrix to scale
+   * @param {Number} b amount to scale the matrix's elements by
+   * @returns {mat2} out
+   */
+
+  function multiplyScalar(out, a, b) {
+    out[0] = a[0] * b;
+    out[1] = a[1] * b;
+    out[2] = a[2] * b;
+    out[3] = a[3] * b;
+    return out;
+  }
+  /**
+   * Adds two mat2's after multiplying each element of the second operand by a scalar value.
+   *
+   * @param {mat2} out the receiving vector
+   * @param {ReadonlyMat2} a the first operand
+   * @param {ReadonlyMat2} b the second operand
+   * @param {Number} scale the amount to scale b's elements by before adding
+   * @returns {mat2} out
+   */
+
+  function multiplyScalarAndAdd(out, a, b, scale) {
+    out[0] = a[0] + b[0] * scale;
+    out[1] = a[1] + b[1] * scale;
+    out[2] = a[2] + b[2] * scale;
+    out[3] = a[3] + b[3] * scale;
+    return out;
+  }
+  /**
+   * Alias for {@link mat2.multiply}
+   * @function
+   */
+
+  var mul = multiply;
+  /**
+   * Alias for {@link mat2.subtract}
+   * @function
+   */
+
+  var sub = subtract;
+
+  var mat2 = /*#__PURE__*/Object.freeze({
+    __proto__: null,
+    create: create,
+    clone: clone,
+    copy: copy,
+    identity: identity,
+    fromValues: fromValues,
+    set: set,
+    transpose: transpose,
+    invert: invert,
+    adjoint: adjoint,
+    determinant: determinant,
+    multiply: multiply,
+    rotate: rotate,
+    scale: scale,
+    fromRotation: fromRotation,
+    fromScaling: fromScaling,
+    str: str,
+    frob: frob,
+    LDU: LDU,
+    add: add,
+    subtract: subtract,
+    exactEquals: exactEquals,
+    equals: equals$1,
+    multiplyScalar: multiplyScalar,
+    multiplyScalarAndAdd: multiplyScalarAndAdd,
+    mul: mul,
+    sub: sub
+  });
+
+  /**
+   * 2x3 Matrix
+   * @module mat2d
+   * @description
+   * A mat2d contains six elements defined as:
+   * <pre>
+   * [a, b,
+   *  c, d,
+   *  tx, ty]
+   * </pre>
+   * This is a short form for the 3x3 matrix:
+   * <pre>
+   * [a, b, 0,
+   *  c, d, 0,
+   *  tx, ty, 1]
+   * </pre>
+   * The last column is ignored so the array is shorter and operations are faster.
+   */
+
+  /**
+   * Creates a new identity mat2d
+   *
+   * @returns {mat2d} a new 2x3 matrix
+   */
+
+  function create$1() {
+    var out = new ARRAY_TYPE(6);
+
+    if (ARRAY_TYPE != Float32Array) {
+      out[1] = 0;
+      out[2] = 0;
+      out[4] = 0;
+      out[5] = 0;
+    }
+
+    out[0] = 1;
+    out[3] = 1;
+    return out;
+  }
+  /**
+   * Creates a new mat2d initialized with values from an existing matrix
+   *
+   * @param {ReadonlyMat2d} a matrix to clone
+   * @returns {mat2d} a new 2x3 matrix
+   */
+
+  function clone$1(a) {
+    var out = new ARRAY_TYPE(6);
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    out[4] = a[4];
+    out[5] = a[5];
+    return out;
+  }
+  /**
+   * Copy the values from one mat2d to another
+   *
+   * @param {mat2d} out the receiving matrix
+   * @param {ReadonlyMat2d} a the source matrix
+   * @returns {mat2d} out
+   */
+
+  function copy$1(out, a) {
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    out[4] = a[4];
+    out[5] = a[5];
+    return out;
+  }
+  /**
+   * Set a mat2d to the identity matrix
+   *
+   * @param {mat2d} out the receiving matrix
+   * @returns {mat2d} out
+   */
+
+  function identity$1(out) {
+    out[0] = 1;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 1;
+    out[4] = 0;
+    out[5] = 0;
+    return out;
+  }
+  /**
+   * Create a new mat2d with the given values
+   *
+   * @param {Number} a Component A (index 0)
+   * @param {Number} b Component B (index 1)
+   * @param {Number} c Component C (index 2)
+   * @param {Number} d Component D (index 3)
+   * @param {Number} tx Component TX (index 4)
+   * @param {Number} ty Component TY (index 5)
+   * @returns {mat2d} A new mat2d
+   */
+
+  function fromValues$1(a, b, c, d, tx, ty) {
+    var out = new ARRAY_TYPE(6);
+    out[0] = a;
+    out[1] = b;
+    out[2] = c;
+    out[3] = d;
+    out[4] = tx;
+    out[5] = ty;
+    return out;
+  }
+  /**
+   * Set the components of a mat2d to the given values
+   *
+   * @param {mat2d} out the receiving matrix
+   * @param {Number} a Component A (index 0)
+   * @param {Number} b Component B (index 1)
+   * @param {Number} c Component C (index 2)
+   * @param {Number} d Component D (index 3)
+   * @param {Number} tx Component TX (index 4)
+   * @param {Number} ty Component TY (index 5)
+   * @returns {mat2d} out
+   */
+
+  function set$1(out, a, b, c, d, tx, ty) {
+    out[0] = a;
+    out[1] = b;
+    out[2] = c;
+    out[3] = d;
+    out[4] = tx;
+    out[5] = ty;
+    return out;
+  }
+  /**
+   * Inverts a mat2d
+   *
+   * @param {mat2d} out the receiving matrix
+   * @param {ReadonlyMat2d} a the source matrix
+   * @returns {mat2d} out
+   */
+
+  function invert$1(out, a) {
+    var aa = a[0],
+        ab = a[1],
+        ac = a[2],
+        ad = a[3];
+    var atx = a[4],
+        aty = a[5];
+    var det = aa * ad - ab * ac;
+
+    if (!det) {
+      return null;
+    }
+
+    det = 1.0 / det;
+    out[0] = ad * det;
+    out[1] = -ab * det;
+    out[2] = -ac * det;
+    out[3] = aa * det;
+    out[4] = (ac * aty - ad * atx) * det;
+    out[5] = (ab * atx - aa * aty) * det;
+    return out;
+  }
+  /**
+   * Calculates the determinant of a mat2d
+   *
+   * @param {ReadonlyMat2d} a the source matrix
+   * @returns {Number} determinant of a
+   */
+
+  function determinant$1(a) {
+    return a[0] * a[3] - a[1] * a[2];
+  }
+  /**
+   * Multiplies two mat2d's
+   *
+   * @param {mat2d} out the receiving matrix
+   * @param {ReadonlyMat2d} a the first operand
+   * @param {ReadonlyMat2d} b the second operand
+   * @returns {mat2d} out
+   */
+
+  function multiply$1(out, a, b) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3],
+        a4 = a[4],
+        a5 = a[5];
+    var b0 = b[0],
+        b1 = b[1],
+        b2 = b[2],
+        b3 = b[3],
+        b4 = b[4],
+        b5 = b[5];
+    out[0] = a0 * b0 + a2 * b1;
+    out[1] = a1 * b0 + a3 * b1;
+    out[2] = a0 * b2 + a2 * b3;
+    out[3] = a1 * b2 + a3 * b3;
+    out[4] = a0 * b4 + a2 * b5 + a4;
+    out[5] = a1 * b4 + a3 * b5 + a5;
+    return out;
+  }
+  /**
+   * Rotates a mat2d by the given angle
+   *
+   * @param {mat2d} out the receiving matrix
+   * @param {ReadonlyMat2d} a the matrix to rotate
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat2d} out
+   */
+
+  function rotate$1(out, a, rad) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3],
+        a4 = a[4],
+        a5 = a[5];
+    var s = Math.sin(rad);
+    var c = Math.cos(rad);
+    out[0] = a0 * c + a2 * s;
+    out[1] = a1 * c + a3 * s;
+    out[2] = a0 * -s + a2 * c;
+    out[3] = a1 * -s + a3 * c;
+    out[4] = a4;
+    out[5] = a5;
+    return out;
+  }
+  /**
+   * Scales the mat2d by the dimensions in the given vec2
+   *
+   * @param {mat2d} out the receiving matrix
+   * @param {ReadonlyMat2d} a the matrix to translate
+   * @param {ReadonlyVec2} v the vec2 to scale the matrix by
+   * @returns {mat2d} out
+   **/
+
+  function scale$1(out, a, v) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3],
+        a4 = a[4],
+        a5 = a[5];
+    var v0 = v[0],
+        v1 = v[1];
+    out[0] = a0 * v0;
+    out[1] = a1 * v0;
+    out[2] = a2 * v1;
+    out[3] = a3 * v1;
+    out[4] = a4;
+    out[5] = a5;
+    return out;
+  }
+  /**
+   * Translates the mat2d by the dimensions in the given vec2
+   *
+   * @param {mat2d} out the receiving matrix
+   * @param {ReadonlyMat2d} a the matrix to translate
+   * @param {ReadonlyVec2} v the vec2 to translate the matrix by
+   * @returns {mat2d} out
+   **/
+
+  function translate(out, a, v) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3],
+        a4 = a[4],
+        a5 = a[5];
+    var v0 = v[0],
+        v1 = v[1];
+    out[0] = a0;
+    out[1] = a1;
+    out[2] = a2;
+    out[3] = a3;
+    out[4] = a0 * v0 + a2 * v1 + a4;
+    out[5] = a1 * v0 + a3 * v1 + a5;
+    return out;
+  }
+  /**
+   * Creates a matrix from a given angle
+   * This is equivalent to (but much faster than):
+   *
+   *     mat2d.identity(dest);
+   *     mat2d.rotate(dest, dest, rad);
+   *
+   * @param {mat2d} out mat2d receiving operation result
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat2d} out
+   */
+
+  function fromRotation$1(out, rad) {
+    var s = Math.sin(rad),
+        c = Math.cos(rad);
+    out[0] = c;
+    out[1] = s;
+    out[2] = -s;
+    out[3] = c;
+    out[4] = 0;
+    out[5] = 0;
+    return out;
+  }
+  /**
+   * Creates a matrix from a vector scaling
+   * This is equivalent to (but much faster than):
+   *
+   *     mat2d.identity(dest);
+   *     mat2d.scale(dest, dest, vec);
+   *
+   * @param {mat2d} out mat2d receiving operation result
+   * @param {ReadonlyVec2} v Scaling vector
+   * @returns {mat2d} out
+   */
+
+  function fromScaling$1(out, v) {
+    out[0] = v[0];
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = v[1];
+    out[4] = 0;
+    out[5] = 0;
+    return out;
+  }
+  /**
+   * Creates a matrix from a vector translation
+   * This is equivalent to (but much faster than):
+   *
+   *     mat2d.identity(dest);
+   *     mat2d.translate(dest, dest, vec);
+   *
+   * @param {mat2d} out mat2d receiving operation result
+   * @param {ReadonlyVec2} v Translation vector
+   * @returns {mat2d} out
+   */
+
+  function fromTranslation(out, v) {
+    out[0] = 1;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 1;
+    out[4] = v[0];
+    out[5] = v[1];
+    return out;
+  }
+  /**
+   * Returns a string representation of a mat2d
+   *
+   * @param {ReadonlyMat2d} a matrix to represent as a string
+   * @returns {String} string representation of the matrix
+   */
+
+  function str$1(a) {
+    return "mat2d(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ", " + a[4] + ", " + a[5] + ")";
+  }
+  /**
+   * Returns Frobenius norm of a mat2d
+   *
+   * @param {ReadonlyMat2d} a the matrix to calculate Frobenius norm of
+   * @returns {Number} Frobenius norm
+   */
+
+  function frob$1(a) {
+    return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], 1);
+  }
+  /**
+   * Adds two mat2d's
+   *
+   * @param {mat2d} out the receiving matrix
+   * @param {ReadonlyMat2d} a the first operand
+   * @param {ReadonlyMat2d} b the second operand
+   * @returns {mat2d} out
+   */
+
+  function add$1(out, a, b) {
+    out[0] = a[0] + b[0];
+    out[1] = a[1] + b[1];
+    out[2] = a[2] + b[2];
+    out[3] = a[3] + b[3];
+    out[4] = a[4] + b[4];
+    out[5] = a[5] + b[5];
+    return out;
+  }
+  /**
+   * Subtracts matrix b from matrix a
+   *
+   * @param {mat2d} out the receiving matrix
+   * @param {ReadonlyMat2d} a the first operand
+   * @param {ReadonlyMat2d} b the second operand
+   * @returns {mat2d} out
+   */
+
+  function subtract$1(out, a, b) {
+    out[0] = a[0] - b[0];
+    out[1] = a[1] - b[1];
+    out[2] = a[2] - b[2];
+    out[3] = a[3] - b[3];
+    out[4] = a[4] - b[4];
+    out[5] = a[5] - b[5];
+    return out;
+  }
+  /**
+   * Multiply each element of the matrix by a scalar.
+   *
+   * @param {mat2d} out the receiving matrix
+   * @param {ReadonlyMat2d} a the matrix to scale
+   * @param {Number} b amount to scale the matrix's elements by
+   * @returns {mat2d} out
+   */
+
+  function multiplyScalar$1(out, a, b) {
+    out[0] = a[0] * b;
+    out[1] = a[1] * b;
+    out[2] = a[2] * b;
+    out[3] = a[3] * b;
+    out[4] = a[4] * b;
+    out[5] = a[5] * b;
+    return out;
+  }
+  /**
+   * Adds two mat2d's after multiplying each element of the second operand by a scalar value.
+   *
+   * @param {mat2d} out the receiving vector
+   * @param {ReadonlyMat2d} a the first operand
+   * @param {ReadonlyMat2d} b the second operand
+   * @param {Number} scale the amount to scale b's elements by before adding
+   * @returns {mat2d} out
+   */
+
+  function multiplyScalarAndAdd$1(out, a, b, scale) {
+    out[0] = a[0] + b[0] * scale;
+    out[1] = a[1] + b[1] * scale;
+    out[2] = a[2] + b[2] * scale;
+    out[3] = a[3] + b[3] * scale;
+    out[4] = a[4] + b[4] * scale;
+    out[5] = a[5] + b[5] * scale;
+    return out;
+  }
+  /**
+   * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
+   *
+   * @param {ReadonlyMat2d} a The first matrix.
+   * @param {ReadonlyMat2d} b The second matrix.
+   * @returns {Boolean} True if the matrices are equal, false otherwise.
+   */
+
+  function exactEquals$1(a, b) {
+    return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5];
+  }
+  /**
+   * Returns whether or not the matrices have approximately the same elements in the same position.
+   *
+   * @param {ReadonlyMat2d} a The first matrix.
+   * @param {ReadonlyMat2d} b The second matrix.
+   * @returns {Boolean} True if the matrices are equal, false otherwise.
+   */
+
+  function equals$2(a, b) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3],
+        a4 = a[4],
+        a5 = a[5];
+    var b0 = b[0],
+        b1 = b[1],
+        b2 = b[2],
+        b3 = b[3],
+        b4 = b[4],
+        b5 = b[5];
+    return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5));
+  }
+  /**
+   * Alias for {@link mat2d.multiply}
+   * @function
+   */
+
+  var mul$1 = multiply$1;
+  /**
+   * Alias for {@link mat2d.subtract}
+   * @function
+   */
+
+  var sub$1 = subtract$1;
+
+  var mat2d = /*#__PURE__*/Object.freeze({
+    __proto__: null,
+    create: create$1,
+    clone: clone$1,
+    copy: copy$1,
+    identity: identity$1,
+    fromValues: fromValues$1,
+    set: set$1,
+    invert: invert$1,
+    determinant: determinant$1,
+    multiply: multiply$1,
+    rotate: rotate$1,
+    scale: scale$1,
+    translate: translate,
+    fromRotation: fromRotation$1,
+    fromScaling: fromScaling$1,
+    fromTranslation: fromTranslation,
+    str: str$1,
+    frob: frob$1,
+    add: add$1,
+    subtract: subtract$1,
+    multiplyScalar: multiplyScalar$1,
+    multiplyScalarAndAdd: multiplyScalarAndAdd$1,
+    exactEquals: exactEquals$1,
+    equals: equals$2,
+    mul: mul$1,
+    sub: sub$1
+  });
+
+  /**
+   * 3x3 Matrix
+   * @module mat3
+   */
+
+  /**
+   * Creates a new identity mat3
+   *
+   * @returns {mat3} a new 3x3 matrix
+   */
+
+  function create$2() {
+    var out = new ARRAY_TYPE(9);
+
+    if (ARRAY_TYPE != Float32Array) {
+      out[1] = 0;
+      out[2] = 0;
+      out[3] = 0;
+      out[5] = 0;
+      out[6] = 0;
+      out[7] = 0;
+    }
+
+    out[0] = 1;
+    out[4] = 1;
+    out[8] = 1;
+    return out;
+  }
+  /**
+   * Copies the upper-left 3x3 values into the given mat3.
+   *
+   * @param {mat3} out the receiving 3x3 matrix
+   * @param {ReadonlyMat4} a   the source 4x4 matrix
+   * @returns {mat3} out
+   */
+
+  function fromMat4(out, a) {
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[4];
+    out[4] = a[5];
+    out[5] = a[6];
+    out[6] = a[8];
+    out[7] = a[9];
+    out[8] = a[10];
+    return out;
+  }
+  /**
+   * Creates a new mat3 initialized with values from an existing matrix
+   *
+   * @param {ReadonlyMat3} a matrix to clone
+   * @returns {mat3} a new 3x3 matrix
+   */
+
+  function clone$2(a) {
+    var out = new ARRAY_TYPE(9);
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    out[4] = a[4];
+    out[5] = a[5];
+    out[6] = a[6];
+    out[7] = a[7];
+    out[8] = a[8];
+    return out;
+  }
+  /**
+   * Copy the values from one mat3 to another
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the source matrix
+   * @returns {mat3} out
+   */
+
+  function copy$2(out, a) {
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    out[4] = a[4];
+    out[5] = a[5];
+    out[6] = a[6];
+    out[7] = a[7];
+    out[8] = a[8];
+    return out;
+  }
+  /**
+   * Create a new mat3 with the given values
+   *
+   * @param {Number} m00 Component in column 0, row 0 position (index 0)
+   * @param {Number} m01 Component in column 0, row 1 position (index 1)
+   * @param {Number} m02 Component in column 0, row 2 position (index 2)
+   * @param {Number} m10 Component in column 1, row 0 position (index 3)
+   * @param {Number} m11 Component in column 1, row 1 position (index 4)
+   * @param {Number} m12 Component in column 1, row 2 position (index 5)
+   * @param {Number} m20 Component in column 2, row 0 position (index 6)
+   * @param {Number} m21 Component in column 2, row 1 position (index 7)
+   * @param {Number} m22 Component in column 2, row 2 position (index 8)
+   * @returns {mat3} A new mat3
+   */
+
+  function fromValues$2(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
+    var out = new ARRAY_TYPE(9);
+    out[0] = m00;
+    out[1] = m01;
+    out[2] = m02;
+    out[3] = m10;
+    out[4] = m11;
+    out[5] = m12;
+    out[6] = m20;
+    out[7] = m21;
+    out[8] = m22;
+    return out;
+  }
+  /**
+   * Set the components of a mat3 to the given values
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {Number} m00 Component in column 0, row 0 position (index 0)
+   * @param {Number} m01 Component in column 0, row 1 position (index 1)
+   * @param {Number} m02 Component in column 0, row 2 position (index 2)
+   * @param {Number} m10 Component in column 1, row 0 position (index 3)
+   * @param {Number} m11 Component in column 1, row 1 position (index 4)
+   * @param {Number} m12 Component in column 1, row 2 position (index 5)
+   * @param {Number} m20 Component in column 2, row 0 position (index 6)
+   * @param {Number} m21 Component in column 2, row 1 position (index 7)
+   * @param {Number} m22 Component in column 2, row 2 position (index 8)
+   * @returns {mat3} out
+   */
+
+  function set$2(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {
+    out[0] = m00;
+    out[1] = m01;
+    out[2] = m02;
+    out[3] = m10;
+    out[4] = m11;
+    out[5] = m12;
+    out[6] = m20;
+    out[7] = m21;
+    out[8] = m22;
+    return out;
+  }
+  /**
+   * Set a mat3 to the identity matrix
+   *
+   * @param {mat3} out the receiving matrix
+   * @returns {mat3} out
+   */
+
+  function identity$2(out) {
+    out[0] = 1;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = 1;
+    out[5] = 0;
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = 1;
+    return out;
+  }
+  /**
+   * Transpose the values of a mat3
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the source matrix
+   * @returns {mat3} out
+   */
+
+  function transpose$1(out, a) {
+    // If we are transposing ourselves we can skip a few steps but have to cache some values
+    if (out === a) {
+      var a01 = a[1],
+          a02 = a[2],
+          a12 = a[5];
+      out[1] = a[3];
+      out[2] = a[6];
+      out[3] = a01;
+      out[5] = a[7];
+      out[6] = a02;
+      out[7] = a12;
+    } else {
+      out[0] = a[0];
+      out[1] = a[3];
+      out[2] = a[6];
+      out[3] = a[1];
+      out[4] = a[4];
+      out[5] = a[7];
+      out[6] = a[2];
+      out[7] = a[5];
+      out[8] = a[8];
+    }
+
+    return out;
+  }
+  /**
+   * Inverts a mat3
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the source matrix
+   * @returns {mat3} out
+   */
+
+  function invert$2(out, a) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2];
+    var a10 = a[3],
+        a11 = a[4],
+        a12 = a[5];
+    var a20 = a[6],
+        a21 = a[7],
+        a22 = a[8];
+    var b01 = a22 * a11 - a12 * a21;
+    var b11 = -a22 * a10 + a12 * a20;
+    var b21 = a21 * a10 - a11 * a20; // Calculate the determinant
+
+    var det = a00 * b01 + a01 * b11 + a02 * b21;
+
+    if (!det) {
+      return null;
+    }
+
+    det = 1.0 / det;
+    out[0] = b01 * det;
+    out[1] = (-a22 * a01 + a02 * a21) * det;
+    out[2] = (a12 * a01 - a02 * a11) * det;
+    out[3] = b11 * det;
+    out[4] = (a22 * a00 - a02 * a20) * det;
+    out[5] = (-a12 * a00 + a02 * a10) * det;
+    out[6] = b21 * det;
+    out[7] = (-a21 * a00 + a01 * a20) * det;
+    out[8] = (a11 * a00 - a01 * a10) * det;
+    return out;
+  }
+  /**
+   * Calculates the adjugate of a mat3
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the source matrix
+   * @returns {mat3} out
+   */
+
+  function adjoint$1(out, a) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2];
+    var a10 = a[3],
+        a11 = a[4],
+        a12 = a[5];
+    var a20 = a[6],
+        a21 = a[7],
+        a22 = a[8];
+    out[0] = a11 * a22 - a12 * a21;
+    out[1] = a02 * a21 - a01 * a22;
+    out[2] = a01 * a12 - a02 * a11;
+    out[3] = a12 * a20 - a10 * a22;
+    out[4] = a00 * a22 - a02 * a20;
+    out[5] = a02 * a10 - a00 * a12;
+    out[6] = a10 * a21 - a11 * a20;
+    out[7] = a01 * a20 - a00 * a21;
+    out[8] = a00 * a11 - a01 * a10;
+    return out;
+  }
+  /**
+   * Calculates the determinant of a mat3
+   *
+   * @param {ReadonlyMat3} a the source matrix
+   * @returns {Number} determinant of a
+   */
+
+  function determinant$2(a) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2];
+    var a10 = a[3],
+        a11 = a[4],
+        a12 = a[5];
+    var a20 = a[6],
+        a21 = a[7],
+        a22 = a[8];
+    return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
+  }
+  /**
+   * Multiplies two mat3's
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the first operand
+   * @param {ReadonlyMat3} b the second operand
+   * @returns {mat3} out
+   */
+
+  function multiply$2(out, a, b) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2];
+    var a10 = a[3],
+        a11 = a[4],
+        a12 = a[5];
+    var a20 = a[6],
+        a21 = a[7],
+        a22 = a[8];
+    var b00 = b[0],
+        b01 = b[1],
+        b02 = b[2];
+    var b10 = b[3],
+        b11 = b[4],
+        b12 = b[5];
+    var b20 = b[6],
+        b21 = b[7],
+        b22 = b[8];
+    out[0] = b00 * a00 + b01 * a10 + b02 * a20;
+    out[1] = b00 * a01 + b01 * a11 + b02 * a21;
+    out[2] = b00 * a02 + b01 * a12 + b02 * a22;
+    out[3] = b10 * a00 + b11 * a10 + b12 * a20;
+    out[4] = b10 * a01 + b11 * a11 + b12 * a21;
+    out[5] = b10 * a02 + b11 * a12 + b12 * a22;
+    out[6] = b20 * a00 + b21 * a10 + b22 * a20;
+    out[7] = b20 * a01 + b21 * a11 + b22 * a21;
+    out[8] = b20 * a02 + b21 * a12 + b22 * a22;
+    return out;
+  }
+  /**
+   * Translate a mat3 by the given vector
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the matrix to translate
+   * @param {ReadonlyVec2} v vector to translate by
+   * @returns {mat3} out
+   */
+
+  function translate$1(out, a, v) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2],
+        a10 = a[3],
+        a11 = a[4],
+        a12 = a[5],
+        a20 = a[6],
+        a21 = a[7],
+        a22 = a[8],
+        x = v[0],
+        y = v[1];
+    out[0] = a00;
+    out[1] = a01;
+    out[2] = a02;
+    out[3] = a10;
+    out[4] = a11;
+    out[5] = a12;
+    out[6] = x * a00 + y * a10 + a20;
+    out[7] = x * a01 + y * a11 + a21;
+    out[8] = x * a02 + y * a12 + a22;
+    return out;
+  }
+  /**
+   * Rotates a mat3 by the given angle
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the matrix to rotate
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat3} out
+   */
+
+  function rotate$2(out, a, rad) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2],
+        a10 = a[3],
+        a11 = a[4],
+        a12 = a[5],
+        a20 = a[6],
+        a21 = a[7],
+        a22 = a[8],
+        s = Math.sin(rad),
+        c = Math.cos(rad);
+    out[0] = c * a00 + s * a10;
+    out[1] = c * a01 + s * a11;
+    out[2] = c * a02 + s * a12;
+    out[3] = c * a10 - s * a00;
+    out[4] = c * a11 - s * a01;
+    out[5] = c * a12 - s * a02;
+    out[6] = a20;
+    out[7] = a21;
+    out[8] = a22;
+    return out;
+  }
+  /**
+   * Scales the mat3 by the dimensions in the given vec2
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the matrix to rotate
+   * @param {ReadonlyVec2} v the vec2 to scale the matrix by
+   * @returns {mat3} out
+   **/
+
+  function scale$2(out, a, v) {
+    var x = v[0],
+        y = v[1];
+    out[0] = x * a[0];
+    out[1] = x * a[1];
+    out[2] = x * a[2];
+    out[3] = y * a[3];
+    out[4] = y * a[4];
+    out[5] = y * a[5];
+    out[6] = a[6];
+    out[7] = a[7];
+    out[8] = a[8];
+    return out;
+  }
+  /**
+   * Creates a matrix from a vector translation
+   * This is equivalent to (but much faster than):
+   *
+   *     mat3.identity(dest);
+   *     mat3.translate(dest, dest, vec);
+   *
+   * @param {mat3} out mat3 receiving operation result
+   * @param {ReadonlyVec2} v Translation vector
+   * @returns {mat3} out
+   */
+
+  function fromTranslation$1(out, v) {
+    out[0] = 1;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = 1;
+    out[5] = 0;
+    out[6] = v[0];
+    out[7] = v[1];
+    out[8] = 1;
+    return out;
+  }
+  /**
+   * Creates a matrix from a given angle
+   * This is equivalent to (but much faster than):
+   *
+   *     mat3.identity(dest);
+   *     mat3.rotate(dest, dest, rad);
+   *
+   * @param {mat3} out mat3 receiving operation result
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat3} out
+   */
+
+  function fromRotation$2(out, rad) {
+    var s = Math.sin(rad),
+        c = Math.cos(rad);
+    out[0] = c;
+    out[1] = s;
+    out[2] = 0;
+    out[3] = -s;
+    out[4] = c;
+    out[5] = 0;
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = 1;
+    return out;
+  }
+  /**
+   * Creates a matrix from a vector scaling
+   * This is equivalent to (but much faster than):
+   *
+   *     mat3.identity(dest);
+   *     mat3.scale(dest, dest, vec);
+   *
+   * @param {mat3} out mat3 receiving operation result
+   * @param {ReadonlyVec2} v Scaling vector
+   * @returns {mat3} out
+   */
+
+  function fromScaling$2(out, v) {
+    out[0] = v[0];
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = v[1];
+    out[5] = 0;
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = 1;
+    return out;
+  }
+  /**
+   * Copies the values from a mat2d into a mat3
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat2d} a the matrix to copy
+   * @returns {mat3} out
+   **/
+
+  function fromMat2d(out, a) {
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = 0;
+    out[3] = a[2];
+    out[4] = a[3];
+    out[5] = 0;
+    out[6] = a[4];
+    out[7] = a[5];
+    out[8] = 1;
+    return out;
+  }
+  /**
+   * Calculates a 3x3 matrix from the given quaternion
+   *
+   * @param {mat3} out mat3 receiving operation result
+   * @param {ReadonlyQuat} q Quaternion to create matrix from
+   *
+   * @returns {mat3} out
+   */
+
+  function fromQuat(out, q) {
+    var x = q[0],
+        y = q[1],
+        z = q[2],
+        w = q[3];
+    var x2 = x + x;
+    var y2 = y + y;
+    var z2 = z + z;
+    var xx = x * x2;
+    var yx = y * x2;
+    var yy = y * y2;
+    var zx = z * x2;
+    var zy = z * y2;
+    var zz = z * z2;
+    var wx = w * x2;
+    var wy = w * y2;
+    var wz = w * z2;
+    out[0] = 1 - yy - zz;
+    out[3] = yx - wz;
+    out[6] = zx + wy;
+    out[1] = yx + wz;
+    out[4] = 1 - xx - zz;
+    out[7] = zy - wx;
+    out[2] = zx - wy;
+    out[5] = zy + wx;
+    out[8] = 1 - xx - yy;
+    return out;
+  }
+  /**
+   * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
+   *
+   * @param {mat3} out mat3 receiving operation result
+   * @param {ReadonlyMat4} a Mat4 to derive the normal matrix from
+   *
+   * @returns {mat3} out
+   */
+
+  function normalFromMat4(out, a) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2],
+        a03 = a[3];
+    var a10 = a[4],
+        a11 = a[5],
+        a12 = a[6],
+        a13 = a[7];
+    var a20 = a[8],
+        a21 = a[9],
+        a22 = a[10],
+        a23 = a[11];
+    var a30 = a[12],
+        a31 = a[13],
+        a32 = a[14],
+        a33 = a[15];
+    var b00 = a00 * a11 - a01 * a10;
+    var b01 = a00 * a12 - a02 * a10;
+    var b02 = a00 * a13 - a03 * a10;
+    var b03 = a01 * a12 - a02 * a11;
+    var b04 = a01 * a13 - a03 * a11;
+    var b05 = a02 * a13 - a03 * a12;
+    var b06 = a20 * a31 - a21 * a30;
+    var b07 = a20 * a32 - a22 * a30;
+    var b08 = a20 * a33 - a23 * a30;
+    var b09 = a21 * a32 - a22 * a31;
+    var b10 = a21 * a33 - a23 * a31;
+    var b11 = a22 * a33 - a23 * a32; // Calculate the determinant
+
+    var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
+
+    if (!det) {
+      return null;
+    }
+
+    det = 1.0 / det;
+    out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
+    out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
+    out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
+    out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
+    out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
+    out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
+    out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
+    out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
+    out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
+    return out;
+  }
+  /**
+   * Generates a 2D projection matrix with the given bounds
+   *
+   * @param {mat3} out mat3 frustum matrix will be written into
+   * @param {number} width Width of your gl context
+   * @param {number} height Height of gl context
+   * @returns {mat3} out
+   */
+
+  function projection(out, width, height) {
+    out[0] = 2 / width;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = -2 / height;
+    out[5] = 0;
+    out[6] = -1;
+    out[7] = 1;
+    out[8] = 1;
+    return out;
+  }
+  /**
+   * Returns a string representation of a mat3
+   *
+   * @param {ReadonlyMat3} a matrix to represent as a string
+   * @returns {String} string representation of the matrix
+   */
+
+  function str$2(a) {
+    return "mat3(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ", " + a[4] + ", " + a[5] + ", " + a[6] + ", " + a[7] + ", " + a[8] + ")";
+  }
+  /**
+   * Returns Frobenius norm of a mat3
+   *
+   * @param {ReadonlyMat3} a the matrix to calculate Frobenius norm of
+   * @returns {Number} Frobenius norm
+   */
+
+  function frob$2(a) {
+    return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]);
+  }
+  /**
+   * Adds two mat3's
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the first operand
+   * @param {ReadonlyMat3} b the second operand
+   * @returns {mat3} out
+   */
+
+  function add$2(out, a, b) {
+    out[0] = a[0] + b[0];
+    out[1] = a[1] + b[1];
+    out[2] = a[2] + b[2];
+    out[3] = a[3] + b[3];
+    out[4] = a[4] + b[4];
+    out[5] = a[5] + b[5];
+    out[6] = a[6] + b[6];
+    out[7] = a[7] + b[7];
+    out[8] = a[8] + b[8];
+    return out;
+  }
+  /**
+   * Subtracts matrix b from matrix a
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the first operand
+   * @param {ReadonlyMat3} b the second operand
+   * @returns {mat3} out
+   */
+
+  function subtract$2(out, a, b) {
+    out[0] = a[0] - b[0];
+    out[1] = a[1] - b[1];
+    out[2] = a[2] - b[2];
+    out[3] = a[3] - b[3];
+    out[4] = a[4] - b[4];
+    out[5] = a[5] - b[5];
+    out[6] = a[6] - b[6];
+    out[7] = a[7] - b[7];
+    out[8] = a[8] - b[8];
+    return out;
+  }
+  /**
+   * Multiply each element of the matrix by a scalar.
+   *
+   * @param {mat3} out the receiving matrix
+   * @param {ReadonlyMat3} a the matrix to scale
+   * @param {Number} b amount to scale the matrix's elements by
+   * @returns {mat3} out
+   */
+
+  function multiplyScalar$2(out, a, b) {
+    out[0] = a[0] * b;
+    out[1] = a[1] * b;
+    out[2] = a[2] * b;
+    out[3] = a[3] * b;
+    out[4] = a[4] * b;
+    out[5] = a[5] * b;
+    out[6] = a[6] * b;
+    out[7] = a[7] * b;
+    out[8] = a[8] * b;
+    return out;
+  }
+  /**
+   * Adds two mat3's after multiplying each element of the second operand by a scalar value.
+   *
+   * @param {mat3} out the receiving vector
+   * @param {ReadonlyMat3} a the first operand
+   * @param {ReadonlyMat3} b the second operand
+   * @param {Number} scale the amount to scale b's elements by before adding
+   * @returns {mat3} out
+   */
+
+  function multiplyScalarAndAdd$2(out, a, b, scale) {
+    out[0] = a[0] + b[0] * scale;
+    out[1] = a[1] + b[1] * scale;
+    out[2] = a[2] + b[2] * scale;
+    out[3] = a[3] + b[3] * scale;
+    out[4] = a[4] + b[4] * scale;
+    out[5] = a[5] + b[5] * scale;
+    out[6] = a[6] + b[6] * scale;
+    out[7] = a[7] + b[7] * scale;
+    out[8] = a[8] + b[8] * scale;
+    return out;
+  }
+  /**
+   * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
+   *
+   * @param {ReadonlyMat3} a The first matrix.
+   * @param {ReadonlyMat3} b The second matrix.
+   * @returns {Boolean} True if the matrices are equal, false otherwise.
+   */
+
+  function exactEquals$2(a, b) {
+    return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];
+  }
+  /**
+   * Returns whether or not the matrices have approximately the same elements in the same position.
+   *
+   * @param {ReadonlyMat3} a The first matrix.
+   * @param {ReadonlyMat3} b The second matrix.
+   * @returns {Boolean} True if the matrices are equal, false otherwise.
+   */
+
+  function equals$3(a, b) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3],
+        a4 = a[4],
+        a5 = a[5],
+        a6 = a[6],
+        a7 = a[7],
+        a8 = a[8];
+    var b0 = b[0],
+        b1 = b[1],
+        b2 = b[2],
+        b3 = b[3],
+        b4 = b[4],
+        b5 = b[5],
+        b6 = b[6],
+        b7 = b[7],
+        b8 = b[8];
+    return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));
+  }
+  /**
+   * Alias for {@link mat3.multiply}
+   * @function
+   */
+
+  var mul$2 = multiply$2;
+  /**
+   * Alias for {@link mat3.subtract}
+   * @function
+   */
+
+  var sub$2 = subtract$2;
+
+  var mat3 = /*#__PURE__*/Object.freeze({
+    __proto__: null,
+    create: create$2,
+    fromMat4: fromMat4,
+    clone: clone$2,
+    copy: copy$2,
+    fromValues: fromValues$2,
+    set: set$2,
+    identity: identity$2,
+    transpose: transpose$1,
+    invert: invert$2,
+    adjoint: adjoint$1,
+    determinant: determinant$2,
+    multiply: multiply$2,
+    translate: translate$1,
+    rotate: rotate$2,
+    scale: scale$2,
+    fromTranslation: fromTranslation$1,
+    fromRotation: fromRotation$2,
+    fromScaling: fromScaling$2,
+    fromMat2d: fromMat2d,
+    fromQuat: fromQuat,
+    normalFromMat4: normalFromMat4,
+    projection: projection,
+    str: str$2,
+    frob: frob$2,
+    add: add$2,
+    subtract: subtract$2,
+    multiplyScalar: multiplyScalar$2,
+    multiplyScalarAndAdd: multiplyScalarAndAdd$2,
+    exactEquals: exactEquals$2,
+    equals: equals$3,
+    mul: mul$2,
+    sub: sub$2
+  });
+
+  /**
+   * 4x4 Matrix<br>Format: column-major, when typed out it looks like row-major<br>The matrices are being post multiplied.
+   * @module mat4
+   */
+
+  /**
+   * Creates a new identity mat4
+   *
+   * @returns {mat4} a new 4x4 matrix
+   */
+
+  function create$3() {
+    var out = new ARRAY_TYPE(16);
+
+    if (ARRAY_TYPE != Float32Array) {
+      out[1] = 0;
+      out[2] = 0;
+      out[3] = 0;
+      out[4] = 0;
+      out[6] = 0;
+      out[7] = 0;
+      out[8] = 0;
+      out[9] = 0;
+      out[11] = 0;
+      out[12] = 0;
+      out[13] = 0;
+      out[14] = 0;
+    }
+
+    out[0] = 1;
+    out[5] = 1;
+    out[10] = 1;
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Creates a new mat4 initialized with values from an existing matrix
+   *
+   * @param {ReadonlyMat4} a matrix to clone
+   * @returns {mat4} a new 4x4 matrix
+   */
+
+  function clone$3(a) {
+    var out = new ARRAY_TYPE(16);
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    out[4] = a[4];
+    out[5] = a[5];
+    out[6] = a[6];
+    out[7] = a[7];
+    out[8] = a[8];
+    out[9] = a[9];
+    out[10] = a[10];
+    out[11] = a[11];
+    out[12] = a[12];
+    out[13] = a[13];
+    out[14] = a[14];
+    out[15] = a[15];
+    return out;
+  }
+  /**
+   * Copy the values from one mat4 to another
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the source matrix
+   * @returns {mat4} out
+   */
+
+  function copy$3(out, a) {
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    out[4] = a[4];
+    out[5] = a[5];
+    out[6] = a[6];
+    out[7] = a[7];
+    out[8] = a[8];
+    out[9] = a[9];
+    out[10] = a[10];
+    out[11] = a[11];
+    out[12] = a[12];
+    out[13] = a[13];
+    out[14] = a[14];
+    out[15] = a[15];
+    return out;
+  }
+  /**
+   * Create a new mat4 with the given values
+   *
+   * @param {Number} m00 Component in column 0, row 0 position (index 0)
+   * @param {Number} m01 Component in column 0, row 1 position (index 1)
+   * @param {Number} m02 Component in column 0, row 2 position (index 2)
+   * @param {Number} m03 Component in column 0, row 3 position (index 3)
+   * @param {Number} m10 Component in column 1, row 0 position (index 4)
+   * @param {Number} m11 Component in column 1, row 1 position (index 5)
+   * @param {Number} m12 Component in column 1, row 2 position (index 6)
+   * @param {Number} m13 Component in column 1, row 3 position (index 7)
+   * @param {Number} m20 Component in column 2, row 0 position (index 8)
+   * @param {Number} m21 Component in column 2, row 1 position (index 9)
+   * @param {Number} m22 Component in column 2, row 2 position (index 10)
+   * @param {Number} m23 Component in column 2, row 3 position (index 11)
+   * @param {Number} m30 Component in column 3, row 0 position (index 12)
+   * @param {Number} m31 Component in column 3, row 1 position (index 13)
+   * @param {Number} m32 Component in column 3, row 2 position (index 14)
+   * @param {Number} m33 Component in column 3, row 3 position (index 15)
+   * @returns {mat4} A new mat4
+   */
+
+  function fromValues$3(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
+    var out = new ARRAY_TYPE(16);
+    out[0] = m00;
+    out[1] = m01;
+    out[2] = m02;
+    out[3] = m03;
+    out[4] = m10;
+    out[5] = m11;
+    out[6] = m12;
+    out[7] = m13;
+    out[8] = m20;
+    out[9] = m21;
+    out[10] = m22;
+    out[11] = m23;
+    out[12] = m30;
+    out[13] = m31;
+    out[14] = m32;
+    out[15] = m33;
+    return out;
+  }
+  /**
+   * Set the components of a mat4 to the given values
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {Number} m00 Component in column 0, row 0 position (index 0)
+   * @param {Number} m01 Component in column 0, row 1 position (index 1)
+   * @param {Number} m02 Component in column 0, row 2 position (index 2)
+   * @param {Number} m03 Component in column 0, row 3 position (index 3)
+   * @param {Number} m10 Component in column 1, row 0 position (index 4)
+   * @param {Number} m11 Component in column 1, row 1 position (index 5)
+   * @param {Number} m12 Component in column 1, row 2 position (index 6)
+   * @param {Number} m13 Component in column 1, row 3 position (index 7)
+   * @param {Number} m20 Component in column 2, row 0 position (index 8)
+   * @param {Number} m21 Component in column 2, row 1 position (index 9)
+   * @param {Number} m22 Component in column 2, row 2 position (index 10)
+   * @param {Number} m23 Component in column 2, row 3 position (index 11)
+   * @param {Number} m30 Component in column 3, row 0 position (index 12)
+   * @param {Number} m31 Component in column 3, row 1 position (index 13)
+   * @param {Number} m32 Component in column 3, row 2 position (index 14)
+   * @param {Number} m33 Component in column 3, row 3 position (index 15)
+   * @returns {mat4} out
+   */
+
+  function set$3(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) {
+    out[0] = m00;
+    out[1] = m01;
+    out[2] = m02;
+    out[3] = m03;
+    out[4] = m10;
+    out[5] = m11;
+    out[6] = m12;
+    out[7] = m13;
+    out[8] = m20;
+    out[9] = m21;
+    out[10] = m22;
+    out[11] = m23;
+    out[12] = m30;
+    out[13] = m31;
+    out[14] = m32;
+    out[15] = m33;
+    return out;
+  }
+  /**
+   * Set a mat4 to the identity matrix
+   *
+   * @param {mat4} out the receiving matrix
+   * @returns {mat4} out
+   */
+
+  function identity$3(out) {
+    out[0] = 1;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = 0;
+    out[5] = 1;
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = 0;
+    out[9] = 0;
+    out[10] = 1;
+    out[11] = 0;
+    out[12] = 0;
+    out[13] = 0;
+    out[14] = 0;
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Transpose the values of a mat4
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the source matrix
+   * @returns {mat4} out
+   */
+
+  function transpose$2(out, a) {
+    // If we are transposing ourselves we can skip a few steps but have to cache some values
+    if (out === a) {
+      var a01 = a[1],
+          a02 = a[2],
+          a03 = a[3];
+      var a12 = a[6],
+          a13 = a[7];
+      var a23 = a[11];
+      out[1] = a[4];
+      out[2] = a[8];
+      out[3] = a[12];
+      out[4] = a01;
+      out[6] = a[9];
+      out[7] = a[13];
+      out[8] = a02;
+      out[9] = a12;
+      out[11] = a[14];
+      out[12] = a03;
+      out[13] = a13;
+      out[14] = a23;
+    } else {
+      out[0] = a[0];
+      out[1] = a[4];
+      out[2] = a[8];
+      out[3] = a[12];
+      out[4] = a[1];
+      out[5] = a[5];
+      out[6] = a[9];
+      out[7] = a[13];
+      out[8] = a[2];
+      out[9] = a[6];
+      out[10] = a[10];
+      out[11] = a[14];
+      out[12] = a[3];
+      out[13] = a[7];
+      out[14] = a[11];
+      out[15] = a[15];
+    }
+
+    return out;
+  }
+  /**
+   * Inverts a mat4
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the source matrix
+   * @returns {mat4} out
+   */
+
+  function invert$3(out, a) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2],
+        a03 = a[3];
+    var a10 = a[4],
+        a11 = a[5],
+        a12 = a[6],
+        a13 = a[7];
+    var a20 = a[8],
+        a21 = a[9],
+        a22 = a[10],
+        a23 = a[11];
+    var a30 = a[12],
+        a31 = a[13],
+        a32 = a[14],
+        a33 = a[15];
+    var b00 = a00 * a11 - a01 * a10;
+    var b01 = a00 * a12 - a02 * a10;
+    var b02 = a00 * a13 - a03 * a10;
+    var b03 = a01 * a12 - a02 * a11;
+    var b04 = a01 * a13 - a03 * a11;
+    var b05 = a02 * a13 - a03 * a12;
+    var b06 = a20 * a31 - a21 * a30;
+    var b07 = a20 * a32 - a22 * a30;
+    var b08 = a20 * a33 - a23 * a30;
+    var b09 = a21 * a32 - a22 * a31;
+    var b10 = a21 * a33 - a23 * a31;
+    var b11 = a22 * a33 - a23 * a32; // Calculate the determinant
+
+    var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
+
+    if (!det) {
+      return null;
+    }
+
+    det = 1.0 / det;
+    out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
+    out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
+    out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
+    out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
+    out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
+    out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
+    out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
+    out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
+    out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
+    out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
+    out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
+    out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
+    out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
+    out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
+    out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
+    out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
+    return out;
+  }
+  /**
+   * Calculates the adjugate of a mat4
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the source matrix
+   * @returns {mat4} out
+   */
+
+  function adjoint$2(out, a) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2],
+        a03 = a[3];
+    var a10 = a[4],
+        a11 = a[5],
+        a12 = a[6],
+        a13 = a[7];
+    var a20 = a[8],
+        a21 = a[9],
+        a22 = a[10],
+        a23 = a[11];
+    var a30 = a[12],
+        a31 = a[13],
+        a32 = a[14],
+        a33 = a[15];
+    out[0] = a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22);
+    out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
+    out[2] = a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12);
+    out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
+    out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
+    out[5] = a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22);
+    out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
+    out[7] = a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12);
+    out[8] = a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21);
+    out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
+    out[10] = a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11);
+    out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
+    out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
+    out[13] = a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21);
+    out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
+    out[15] = a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11);
+    return out;
+  }
+  /**
+   * Calculates the determinant of a mat4
+   *
+   * @param {ReadonlyMat4} a the source matrix
+   * @returns {Number} determinant of a
+   */
+
+  function determinant$3(a) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2],
+        a03 = a[3];
+    var a10 = a[4],
+        a11 = a[5],
+        a12 = a[6],
+        a13 = a[7];
+    var a20 = a[8],
+        a21 = a[9],
+        a22 = a[10],
+        a23 = a[11];
+    var a30 = a[12],
+        a31 = a[13],
+        a32 = a[14],
+        a33 = a[15];
+    var b00 = a00 * a11 - a01 * a10;
+    var b01 = a00 * a12 - a02 * a10;
+    var b02 = a00 * a13 - a03 * a10;
+    var b03 = a01 * a12 - a02 * a11;
+    var b04 = a01 * a13 - a03 * a11;
+    var b05 = a02 * a13 - a03 * a12;
+    var b06 = a20 * a31 - a21 * a30;
+    var b07 = a20 * a32 - a22 * a30;
+    var b08 = a20 * a33 - a23 * a30;
+    var b09 = a21 * a32 - a22 * a31;
+    var b10 = a21 * a33 - a23 * a31;
+    var b11 = a22 * a33 - a23 * a32; // Calculate the determinant
+
+    return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
+  }
+  /**
+   * Multiplies two mat4s
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the first operand
+   * @param {ReadonlyMat4} b the second operand
+   * @returns {mat4} out
+   */
+
+  function multiply$3(out, a, b) {
+    var a00 = a[0],
+        a01 = a[1],
+        a02 = a[2],
+        a03 = a[3];
+    var a10 = a[4],
+        a11 = a[5],
+        a12 = a[6],
+        a13 = a[7];
+    var a20 = a[8],
+        a21 = a[9],
+        a22 = a[10],
+        a23 = a[11];
+    var a30 = a[12],
+        a31 = a[13],
+        a32 = a[14],
+        a33 = a[15]; // Cache only the current line of the second matrix
+
+    var b0 = b[0],
+        b1 = b[1],
+        b2 = b[2],
+        b3 = b[3];
+    out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+    out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+    out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+    out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+    b0 = b[4];
+    b1 = b[5];
+    b2 = b[6];
+    b3 = b[7];
+    out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+    out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+    out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+    out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+    b0 = b[8];
+    b1 = b[9];
+    b2 = b[10];
+    b3 = b[11];
+    out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+    out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+    out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+    out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+    b0 = b[12];
+    b1 = b[13];
+    b2 = b[14];
+    b3 = b[15];
+    out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
+    out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
+    out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
+    out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
+    return out;
+  }
+  /**
+   * Translate a mat4 by the given vector
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the matrix to translate
+   * @param {ReadonlyVec3} v vector to translate by
+   * @returns {mat4} out
+   */
+
+  function translate$2(out, a, v) {
+    var x = v[0],
+        y = v[1],
+        z = v[2];
+    var a00, a01, a02, a03;
+    var a10, a11, a12, a13;
+    var a20, a21, a22, a23;
+
+    if (a === out) {
+      out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
+      out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
+      out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
+      out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
+    } else {
+      a00 = a[0];
+      a01 = a[1];
+      a02 = a[2];
+      a03 = a[3];
+      a10 = a[4];
+      a11 = a[5];
+      a12 = a[6];
+      a13 = a[7];
+      a20 = a[8];
+      a21 = a[9];
+      a22 = a[10];
+      a23 = a[11];
+      out[0] = a00;
+      out[1] = a01;
+      out[2] = a02;
+      out[3] = a03;
+      out[4] = a10;
+      out[5] = a11;
+      out[6] = a12;
+      out[7] = a13;
+      out[8] = a20;
+      out[9] = a21;
+      out[10] = a22;
+      out[11] = a23;
+      out[12] = a00 * x + a10 * y + a20 * z + a[12];
+      out[13] = a01 * x + a11 * y + a21 * z + a[13];
+      out[14] = a02 * x + a12 * y + a22 * z + a[14];
+      out[15] = a03 * x + a13 * y + a23 * z + a[15];
+    }
+
+    return out;
+  }
+  /**
+   * Scales the mat4 by the dimensions in the given vec3 not using vectorization
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the matrix to scale
+   * @param {ReadonlyVec3} v the vec3 to scale the matrix by
+   * @returns {mat4} out
+   **/
+
+  function scale$3(out, a, v) {
+    var x = v[0],
+        y = v[1],
+        z = v[2];
+    out[0] = a[0] * x;
+    out[1] = a[1] * x;
+    out[2] = a[2] * x;
+    out[3] = a[3] * x;
+    out[4] = a[4] * y;
+    out[5] = a[5] * y;
+    out[6] = a[6] * y;
+    out[7] = a[7] * y;
+    out[8] = a[8] * z;
+    out[9] = a[9] * z;
+    out[10] = a[10] * z;
+    out[11] = a[11] * z;
+    out[12] = a[12];
+    out[13] = a[13];
+    out[14] = a[14];
+    out[15] = a[15];
+    return out;
+  }
+  /**
+   * Rotates a mat4 by the given angle around the given axis
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the matrix to rotate
+   * @param {Number} rad the angle to rotate the matrix by
+   * @param {ReadonlyVec3} axis the axis to rotate around
+   * @returns {mat4} out
+   */
+
+  function rotate$3(out, a, rad, axis) {
+    var x = axis[0],
+        y = axis[1],
+        z = axis[2];
+    var len = Math.hypot(x, y, z);
+    var s, c, t;
+    var a00, a01, a02, a03;
+    var a10, a11, a12, a13;
+    var a20, a21, a22, a23;
+    var b00, b01, b02;
+    var b10, b11, b12;
+    var b20, b21, b22;
+
+    if (len < EPSILON) {
+      return null;
+    }
+
+    len = 1 / len;
+    x *= len;
+    y *= len;
+    z *= len;
+    s = Math.sin(rad);
+    c = Math.cos(rad);
+    t = 1 - c;
+    a00 = a[0];
+    a01 = a[1];
+    a02 = a[2];
+    a03 = a[3];
+    a10 = a[4];
+    a11 = a[5];
+    a12 = a[6];
+    a13 = a[7];
+    a20 = a[8];
+    a21 = a[9];
+    a22 = a[10];
+    a23 = a[11]; // Construct the elements of the rotation matrix
+
+    b00 = x * x * t + c;
+    b01 = y * x * t + z * s;
+    b02 = z * x * t - y * s;
+    b10 = x * y * t - z * s;
+    b11 = y * y * t + c;
+    b12 = z * y * t + x * s;
+    b20 = x * z * t + y * s;
+    b21 = y * z * t - x * s;
+    b22 = z * z * t + c; // Perform rotation-specific matrix multiplication
+
+    out[0] = a00 * b00 + a10 * b01 + a20 * b02;
+    out[1] = a01 * b00 + a11 * b01 + a21 * b02;
+    out[2] = a02 * b00 + a12 * b01 + a22 * b02;
+    out[3] = a03 * b00 + a13 * b01 + a23 * b02;
+    out[4] = a00 * b10 + a10 * b11 + a20 * b12;
+    out[5] = a01 * b10 + a11 * b11 + a21 * b12;
+    out[6] = a02 * b10 + a12 * b11 + a22 * b12;
+    out[7] = a03 * b10 + a13 * b11 + a23 * b12;
+    out[8] = a00 * b20 + a10 * b21 + a20 * b22;
+    out[9] = a01 * b20 + a11 * b21 + a21 * b22;
+    out[10] = a02 * b20 + a12 * b21 + a22 * b22;
+    out[11] = a03 * b20 + a13 * b21 + a23 * b22;
+
+    if (a !== out) {
+      // If the source and destination differ, copy the unchanged last row
+      out[12] = a[12];
+      out[13] = a[13];
+      out[14] = a[14];
+      out[15] = a[15];
+    }
+
+    return out;
+  }
+  /**
+   * Rotates a matrix by the given angle around the X axis
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the matrix to rotate
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat4} out
+   */
+
+  function rotateX(out, a, rad) {
+    var s = Math.sin(rad);
+    var c = Math.cos(rad);
+    var a10 = a[4];
+    var a11 = a[5];
+    var a12 = a[6];
+    var a13 = a[7];
+    var a20 = a[8];
+    var a21 = a[9];
+    var a22 = a[10];
+    var a23 = a[11];
+
+    if (a !== out) {
+      // If the source and destination differ, copy the unchanged rows
+      out[0] = a[0];
+      out[1] = a[1];
+      out[2] = a[2];
+      out[3] = a[3];
+      out[12] = a[12];
+      out[13] = a[13];
+      out[14] = a[14];
+      out[15] = a[15];
+    } // Perform axis-specific matrix multiplication
+
+
+    out[4] = a10 * c + a20 * s;
+    out[5] = a11 * c + a21 * s;
+    out[6] = a12 * c + a22 * s;
+    out[7] = a13 * c + a23 * s;
+    out[8] = a20 * c - a10 * s;
+    out[9] = a21 * c - a11 * s;
+    out[10] = a22 * c - a12 * s;
+    out[11] = a23 * c - a13 * s;
+    return out;
+  }
+  /**
+   * Rotates a matrix by the given angle around the Y axis
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the matrix to rotate
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat4} out
+   */
+
+  function rotateY(out, a, rad) {
+    var s = Math.sin(rad);
+    var c = Math.cos(rad);
+    var a00 = a[0];
+    var a01 = a[1];
+    var a02 = a[2];
+    var a03 = a[3];
+    var a20 = a[8];
+    var a21 = a[9];
+    var a22 = a[10];
+    var a23 = a[11];
+
+    if (a !== out) {
+      // If the source and destination differ, copy the unchanged rows
+      out[4] = a[4];
+      out[5] = a[5];
+      out[6] = a[6];
+      out[7] = a[7];
+      out[12] = a[12];
+      out[13] = a[13];
+      out[14] = a[14];
+      out[15] = a[15];
+    } // Perform axis-specific matrix multiplication
+
+
+    out[0] = a00 * c - a20 * s;
+    out[1] = a01 * c - a21 * s;
+    out[2] = a02 * c - a22 * s;
+    out[3] = a03 * c - a23 * s;
+    out[8] = a00 * s + a20 * c;
+    out[9] = a01 * s + a21 * c;
+    out[10] = a02 * s + a22 * c;
+    out[11] = a03 * s + a23 * c;
+    return out;
+  }
+  /**
+   * Rotates a matrix by the given angle around the Z axis
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the matrix to rotate
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat4} out
+   */
+
+  function rotateZ(out, a, rad) {
+    var s = Math.sin(rad);
+    var c = Math.cos(rad);
+    var a00 = a[0];
+    var a01 = a[1];
+    var a02 = a[2];
+    var a03 = a[3];
+    var a10 = a[4];
+    var a11 = a[5];
+    var a12 = a[6];
+    var a13 = a[7];
+
+    if (a !== out) {
+      // If the source and destination differ, copy the unchanged last row
+      out[8] = a[8];
+      out[9] = a[9];
+      out[10] = a[10];
+      out[11] = a[11];
+      out[12] = a[12];
+      out[13] = a[13];
+      out[14] = a[14];
+      out[15] = a[15];
+    } // Perform axis-specific matrix multiplication
+
+
+    out[0] = a00 * c + a10 * s;
+    out[1] = a01 * c + a11 * s;
+    out[2] = a02 * c + a12 * s;
+    out[3] = a03 * c + a13 * s;
+    out[4] = a10 * c - a00 * s;
+    out[5] = a11 * c - a01 * s;
+    out[6] = a12 * c - a02 * s;
+    out[7] = a13 * c - a03 * s;
+    return out;
+  }
+  /**
+   * Creates a matrix from a vector translation
+   * This is equivalent to (but much faster than):
+   *
+   *     mat4.identity(dest);
+   *     mat4.translate(dest, dest, vec);
+   *
+   * @param {mat4} out mat4 receiving operation result
+   * @param {ReadonlyVec3} v Translation vector
+   * @returns {mat4} out
+   */
+
+  function fromTranslation$2(out, v) {
+    out[0] = 1;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = 0;
+    out[5] = 1;
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = 0;
+    out[9] = 0;
+    out[10] = 1;
+    out[11] = 0;
+    out[12] = v[0];
+    out[13] = v[1];
+    out[14] = v[2];
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Creates a matrix from a vector scaling
+   * This is equivalent to (but much faster than):
+   *
+   *     mat4.identity(dest);
+   *     mat4.scale(dest, dest, vec);
+   *
+   * @param {mat4} out mat4 receiving operation result
+   * @param {ReadonlyVec3} v Scaling vector
+   * @returns {mat4} out
+   */
+
+  function fromScaling$3(out, v) {
+    out[0] = v[0];
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = 0;
+    out[5] = v[1];
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = 0;
+    out[9] = 0;
+    out[10] = v[2];
+    out[11] = 0;
+    out[12] = 0;
+    out[13] = 0;
+    out[14] = 0;
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Creates a matrix from a given angle around a given axis
+   * This is equivalent to (but much faster than):
+   *
+   *     mat4.identity(dest);
+   *     mat4.rotate(dest, dest, rad, axis);
+   *
+   * @param {mat4} out mat4 receiving operation result
+   * @param {Number} rad the angle to rotate the matrix by
+   * @param {ReadonlyVec3} axis the axis to rotate around
+   * @returns {mat4} out
+   */
+
+  function fromRotation$3(out, rad, axis) {
+    var x = axis[0],
+        y = axis[1],
+        z = axis[2];
+    var len = Math.hypot(x, y, z);
+    var s, c, t;
+
+    if (len < EPSILON) {
+      return null;
+    }
+
+    len = 1 / len;
+    x *= len;
+    y *= len;
+    z *= len;
+    s = Math.sin(rad);
+    c = Math.cos(rad);
+    t = 1 - c; // Perform rotation-specific matrix multiplication
+
+    out[0] = x * x * t + c;
+    out[1] = y * x * t + z * s;
+    out[2] = z * x * t - y * s;
+    out[3] = 0;
+    out[4] = x * y * t - z * s;
+    out[5] = y * y * t + c;
+    out[6] = z * y * t + x * s;
+    out[7] = 0;
+    out[8] = x * z * t + y * s;
+    out[9] = y * z * t - x * s;
+    out[10] = z * z * t + c;
+    out[11] = 0;
+    out[12] = 0;
+    out[13] = 0;
+    out[14] = 0;
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Creates a matrix from the given angle around the X axis
+   * This is equivalent to (but much faster than):
+   *
+   *     mat4.identity(dest);
+   *     mat4.rotateX(dest, dest, rad);
+   *
+   * @param {mat4} out mat4 receiving operation result
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat4} out
+   */
+
+  function fromXRotation(out, rad) {
+    var s = Math.sin(rad);
+    var c = Math.cos(rad); // Perform axis-specific matrix multiplication
+
+    out[0] = 1;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = 0;
+    out[5] = c;
+    out[6] = s;
+    out[7] = 0;
+    out[8] = 0;
+    out[9] = -s;
+    out[10] = c;
+    out[11] = 0;
+    out[12] = 0;
+    out[13] = 0;
+    out[14] = 0;
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Creates a matrix from the given angle around the Y axis
+   * This is equivalent to (but much faster than):
+   *
+   *     mat4.identity(dest);
+   *     mat4.rotateY(dest, dest, rad);
+   *
+   * @param {mat4} out mat4 receiving operation result
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat4} out
+   */
+
+  function fromYRotation(out, rad) {
+    var s = Math.sin(rad);
+    var c = Math.cos(rad); // Perform axis-specific matrix multiplication
+
+    out[0] = c;
+    out[1] = 0;
+    out[2] = -s;
+    out[3] = 0;
+    out[4] = 0;
+    out[5] = 1;
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = s;
+    out[9] = 0;
+    out[10] = c;
+    out[11] = 0;
+    out[12] = 0;
+    out[13] = 0;
+    out[14] = 0;
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Creates a matrix from the given angle around the Z axis
+   * This is equivalent to (but much faster than):
+   *
+   *     mat4.identity(dest);
+   *     mat4.rotateZ(dest, dest, rad);
+   *
+   * @param {mat4} out mat4 receiving operation result
+   * @param {Number} rad the angle to rotate the matrix by
+   * @returns {mat4} out
+   */
+
+  function fromZRotation(out, rad) {
+    var s = Math.sin(rad);
+    var c = Math.cos(rad); // Perform axis-specific matrix multiplication
+
+    out[0] = c;
+    out[1] = s;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = -s;
+    out[5] = c;
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = 0;
+    out[9] = 0;
+    out[10] = 1;
+    out[11] = 0;
+    out[12] = 0;
+    out[13] = 0;
+    out[14] = 0;
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Creates a matrix from a quaternion rotation and vector translation
+   * This is equivalent to (but much faster than):
+   *
+   *     mat4.identity(dest);
+   *     mat4.translate(dest, vec);
+   *     let quatMat = mat4.create();
+   *     quat4.toMat4(quat, quatMat);
+   *     mat4.multiply(dest, quatMat);
+   *
+   * @param {mat4} out mat4 receiving operation result
+   * @param {quat4} q Rotation quaternion
+   * @param {ReadonlyVec3} v Translation vector
+   * @returns {mat4} out
+   */
+
+  function fromRotationTranslation(out, q, v) {
+    // Quaternion math
+    var x = q[0],
+        y = q[1],
+        z = q[2],
+        w = q[3];
+    var x2 = x + x;
+    var y2 = y + y;
+    var z2 = z + z;
+    var xx = x * x2;
+    var xy = x * y2;
+    var xz = x * z2;
+    var yy = y * y2;
+    var yz = y * z2;
+    var zz = z * z2;
+    var wx = w * x2;
+    var wy = w * y2;
+    var wz = w * z2;
+    out[0] = 1 - (yy + zz);
+    out[1] = xy + wz;
+    out[2] = xz - wy;
+    out[3] = 0;
+    out[4] = xy - wz;
+    out[5] = 1 - (xx + zz);
+    out[6] = yz + wx;
+    out[7] = 0;
+    out[8] = xz + wy;
+    out[9] = yz - wx;
+    out[10] = 1 - (xx + yy);
+    out[11] = 0;
+    out[12] = v[0];
+    out[13] = v[1];
+    out[14] = v[2];
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Creates a new mat4 from a dual quat.
+   *
+   * @param {mat4} out Matrix
+   * @param {ReadonlyQuat2} a Dual Quaternion
+   * @returns {mat4} mat4 receiving operation result
+   */
+
+  function fromQuat2(out, a) {
+    var translation = new ARRAY_TYPE(3);
+    var bx = -a[0],
+        by = -a[1],
+        bz = -a[2],
+        bw = a[3],
+        ax = a[4],
+        ay = a[5],
+        az = a[6],
+        aw = a[7];
+    var magnitude = bx * bx + by * by + bz * bz + bw * bw; //Only scale if it makes sense
+
+    if (magnitude > 0) {
+      translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2 / magnitude;
+      translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2 / magnitude;
+      translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2 / magnitude;
+    } else {
+      translation[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;
+      translation[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;
+      translation[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;
+    }
+
+    fromRotationTranslation(out, a, translation);
+    return out;
+  }
+  /**
+   * Returns the translation vector component of a transformation
+   *  matrix. If a matrix is built with fromRotationTranslation,
+   *  the returned vector will be the same as the translation vector
+   *  originally supplied.
+   * @param  {vec3} out Vector to receive translation component
+   * @param  {ReadonlyMat4} mat Matrix to be decomposed (input)
+   * @return {vec3} out
+   */
+
+  function getTranslation(out, mat) {
+    out[0] = mat[12];
+    out[1] = mat[13];
+    out[2] = mat[14];
+    return out;
+  }
+  /**
+   * Returns the scaling factor component of a transformation
+   *  matrix. If a matrix is built with fromRotationTranslationScale
+   *  with a normalized Quaternion paramter, the returned vector will be
+   *  the same as the scaling vector
+   *  originally supplied.
+   * @param  {vec3} out Vector to receive scaling factor component
+   * @param  {ReadonlyMat4} mat Matrix to be decomposed (input)
+   * @return {vec3} out
+   */
+
+  function getScaling(out, mat) {
+    var m11 = mat[0];
+    var m12 = mat[1];
+    var m13 = mat[2];
+    var m21 = mat[4];
+    var m22 = mat[5];
+    var m23 = mat[6];
+    var m31 = mat[8];
+    var m32 = mat[9];
+    var m33 = mat[10];
+    out[0] = Math.hypot(m11, m12, m13);
+    out[1] = Math.hypot(m21, m22, m23);
+    out[2] = Math.hypot(m31, m32, m33);
+    return out;
+  }
+  /**
+   * Returns a quaternion representing the rotational component
+   *  of a transformation matrix. If a matrix is built with
+   *  fromRotationTranslation, the returned quaternion will be the
+   *  same as the quaternion originally supplied.
+   * @param {quat} out Quaternion to receive the rotation component
+   * @param {ReadonlyMat4} mat Matrix to be decomposed (input)
+   * @return {quat} out
+   */
+
+  function getRotation(out, mat) {
+    var scaling = new ARRAY_TYPE(3);
+    getScaling(scaling, mat);
+    var is1 = 1 / scaling[0];
+    var is2 = 1 / scaling[1];
+    var is3 = 1 / scaling[2];
+    var sm11 = mat[0] * is1;
+    var sm12 = mat[1] * is2;
+    var sm13 = mat[2] * is3;
+    var sm21 = mat[4] * is1;
+    var sm22 = mat[5] * is2;
+    var sm23 = mat[6] * is3;
+    var sm31 = mat[8] * is1;
+    var sm32 = mat[9] * is2;
+    var sm33 = mat[10] * is3;
+    var trace = sm11 + sm22 + sm33;
+    var S = 0;
+
+    if (trace > 0) {
+      S = Math.sqrt(trace + 1.0) * 2;
+      out[3] = 0.25 * S;
+      out[0] = (sm23 - sm32) / S;
+      out[1] = (sm31 - sm13) / S;
+      out[2] = (sm12 - sm21) / S;
+    } else if (sm11 > sm22 && sm11 > sm33) {
+      S = Math.sqrt(1.0 + sm11 - sm22 - sm33) * 2;
+      out[3] = (sm23 - sm32) / S;
+      out[0] = 0.25 * S;
+      out[1] = (sm12 + sm21) / S;
+      out[2] = (sm31 + sm13) / S;
+    } else if (sm22 > sm33) {
+      S = Math.sqrt(1.0 + sm22 - sm11 - sm33) * 2;
+      out[3] = (sm31 - sm13) / S;
+      out[0] = (sm12 + sm21) / S;
+      out[1] = 0.25 * S;
+      out[2] = (sm23 + sm32) / S;
+    } else {
+      S = Math.sqrt(1.0 + sm33 - sm11 - sm22) * 2;
+      out[3] = (sm12 - sm21) / S;
+      out[0] = (sm31 + sm13) / S;
+      out[1] = (sm23 + sm32) / S;
+      out[2] = 0.25 * S;
+    }
+
+    return out;
+  }
+  /**
+   * Creates a matrix from a quaternion rotation, vector translation and vector scale
+   * This is equivalent to (but much faster than):
+   *
+   *     mat4.identity(dest);
+   *     mat4.translate(dest, vec);
+   *     let quatMat = mat4.create();
+   *     quat4.toMat4(quat, quatMat);
+   *     mat4.multiply(dest, quatMat);
+   *     mat4.scale(dest, scale)
+   *
+   * @param {mat4} out mat4 receiving operation result
+   * @param {quat4} q Rotation quaternion
+   * @param {ReadonlyVec3} v Translation vector
+   * @param {ReadonlyVec3} s Scaling vector
+   * @returns {mat4} out
+   */
+
+  function fromRotationTranslationScale(out, q, v, s) {
+    // Quaternion math
+    var x = q[0],
+        y = q[1],
+        z = q[2],
+        w = q[3];
+    var x2 = x + x;
+    var y2 = y + y;
+    var z2 = z + z;
+    var xx = x * x2;
+    var xy = x * y2;
+    var xz = x * z2;
+    var yy = y * y2;
+    var yz = y * z2;
+    var zz = z * z2;
+    var wx = w * x2;
+    var wy = w * y2;
+    var wz = w * z2;
+    var sx = s[0];
+    var sy = s[1];
+    var sz = s[2];
+    out[0] = (1 - (yy + zz)) * sx;
+    out[1] = (xy + wz) * sx;
+    out[2] = (xz - wy) * sx;
+    out[3] = 0;
+    out[4] = (xy - wz) * sy;
+    out[5] = (1 - (xx + zz)) * sy;
+    out[6] = (yz + wx) * sy;
+    out[7] = 0;
+    out[8] = (xz + wy) * sz;
+    out[9] = (yz - wx) * sz;
+    out[10] = (1 - (xx + yy)) * sz;
+    out[11] = 0;
+    out[12] = v[0];
+    out[13] = v[1];
+    out[14] = v[2];
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin
+   * This is equivalent to (but much faster than):
+   *
+   *     mat4.identity(dest);
+   *     mat4.translate(dest, vec);
+   *     mat4.translate(dest, origin);
+   *     let quatMat = mat4.create();
+   *     quat4.toMat4(quat, quatMat);
+   *     mat4.multiply(dest, quatMat);
+   *     mat4.scale(dest, scale)
+   *     mat4.translate(dest, negativeOrigin);
+   *
+   * @param {mat4} out mat4 receiving operation result
+   * @param {quat4} q Rotation quaternion
+   * @param {ReadonlyVec3} v Translation vector
+   * @param {ReadonlyVec3} s Scaling vector
+   * @param {ReadonlyVec3} o The origin vector around which to scale and rotate
+   * @returns {mat4} out
+   */
+
+  function fromRotationTranslationScaleOrigin(out, q, v, s, o) {
+    // Quaternion math
+    var x = q[0],
+        y = q[1],
+        z = q[2],
+        w = q[3];
+    var x2 = x + x;
+    var y2 = y + y;
+    var z2 = z + z;
+    var xx = x * x2;
+    var xy = x * y2;
+    var xz = x * z2;
+    var yy = y * y2;
+    var yz = y * z2;
+    var zz = z * z2;
+    var wx = w * x2;
+    var wy = w * y2;
+    var wz = w * z2;
+    var sx = s[0];
+    var sy = s[1];
+    var sz = s[2];
+    var ox = o[0];
+    var oy = o[1];
+    var oz = o[2];
+    var out0 = (1 - (yy + zz)) * sx;
+    var out1 = (xy + wz) * sx;
+    var out2 = (xz - wy) * sx;
+    var out4 = (xy - wz) * sy;
+    var out5 = (1 - (xx + zz)) * sy;
+    var out6 = (yz + wx) * sy;
+    var out8 = (xz + wy) * sz;
+    var out9 = (yz - wx) * sz;
+    var out10 = (1 - (xx + yy)) * sz;
+    out[0] = out0;
+    out[1] = out1;
+    out[2] = out2;
+    out[3] = 0;
+    out[4] = out4;
+    out[5] = out5;
+    out[6] = out6;
+    out[7] = 0;
+    out[8] = out8;
+    out[9] = out9;
+    out[10] = out10;
+    out[11] = 0;
+    out[12] = v[0] + ox - (out0 * ox + out4 * oy + out8 * oz);
+    out[13] = v[1] + oy - (out1 * ox + out5 * oy + out9 * oz);
+    out[14] = v[2] + oz - (out2 * ox + out6 * oy + out10 * oz);
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Calculates a 4x4 matrix from the given quaternion
+   *
+   * @param {mat4} out mat4 receiving operation result
+   * @param {ReadonlyQuat} q Quaternion to create matrix from
+   *
+   * @returns {mat4} out
+   */
+
+  function fromQuat$1(out, q) {
+    var x = q[0],
+        y = q[1],
+        z = q[2],
+        w = q[3];
+    var x2 = x + x;
+    var y2 = y + y;
+    var z2 = z + z;
+    var xx = x * x2;
+    var yx = y * x2;
+    var yy = y * y2;
+    var zx = z * x2;
+    var zy = z * y2;
+    var zz = z * z2;
+    var wx = w * x2;
+    var wy = w * y2;
+    var wz = w * z2;
+    out[0] = 1 - yy - zz;
+    out[1] = yx + wz;
+    out[2] = zx - wy;
+    out[3] = 0;
+    out[4] = yx - wz;
+    out[5] = 1 - xx - zz;
+    out[6] = zy + wx;
+    out[7] = 0;
+    out[8] = zx + wy;
+    out[9] = zy - wx;
+    out[10] = 1 - xx - yy;
+    out[11] = 0;
+    out[12] = 0;
+    out[13] = 0;
+    out[14] = 0;
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Generates a frustum matrix with the given bounds
+   *
+   * @param {mat4} out mat4 frustum matrix will be written into
+   * @param {Number} left Left bound of the frustum
+   * @param {Number} right Right bound of the frustum
+   * @param {Number} bottom Bottom bound of the frustum
+   * @param {Number} top Top bound of the frustum
+   * @param {Number} near Near bound of the frustum
+   * @param {Number} far Far bound of the frustum
+   * @returns {mat4} out
+   */
+
+  function frustum(out, left, right, bottom, top, near, far) {
+    var rl = 1 / (right - left);
+    var tb = 1 / (top - bottom);
+    var nf = 1 / (near - far);
+    out[0] = near * 2 * rl;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = 0;
+    out[5] = near * 2 * tb;
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = (right + left) * rl;
+    out[9] = (top + bottom) * tb;
+    out[10] = (far + near) * nf;
+    out[11] = -1;
+    out[12] = 0;
+    out[13] = 0;
+    out[14] = far * near * 2 * nf;
+    out[15] = 0;
+    return out;
+  }
+  /**
+   * Generates a perspective projection matrix with the given bounds.
+   * Passing null/undefined/no value for far will generate infinite projection matrix.
+   *
+   * @param {mat4} out mat4 frustum matrix will be written into
+   * @param {number} fovy Vertical field of view in radians
+   * @param {number} aspect Aspect ratio. typically viewport width/height
+   * @param {number} near Near bound of the frustum
+   * @param {number} far Far bound of the frustum, can be null or Infinity
+   * @returns {mat4} out
+   */
+
+  function perspective(out, fovy, aspect, near, far) {
+    var f = 1.0 / Math.tan(fovy / 2),
+        nf;
+    out[0] = f / aspect;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = 0;
+    out[5] = f;
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = 0;
+    out[9] = 0;
+    out[11] = -1;
+    out[12] = 0;
+    out[13] = 0;
+    out[15] = 0;
+
+    if (far != null && far !== Infinity) {
+      nf = 1 / (near - far);
+      out[10] = (far + near) * nf;
+      out[14] = 2 * far * near * nf;
+    } else {
+      out[10] = -1;
+      out[14] = -2 * near;
+    }
+
+    return out;
+  }
+  /**
+   * Generates a perspective projection matrix with the given field of view.
+   * This is primarily useful for generating projection matrices to be used
+   * with the still experiemental WebVR API.
+   *
+   * @param {mat4} out mat4 frustum matrix will be written into
+   * @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees
+   * @param {number} near Near bound of the frustum
+   * @param {number} far Far bound of the frustum
+   * @returns {mat4} out
+   */
+
+  function perspectiveFromFieldOfView(out, fov, near, far) {
+    var upTan = Math.tan(fov.upDegrees * Math.PI / 180.0);
+    var downTan = Math.tan(fov.downDegrees * Math.PI / 180.0);
+    var leftTan = Math.tan(fov.leftDegrees * Math.PI / 180.0);
+    var rightTan = Math.tan(fov.rightDegrees * Math.PI / 180.0);
+    var xScale = 2.0 / (leftTan + rightTan);
+    var yScale = 2.0 / (upTan + downTan);
+    out[0] = xScale;
+    out[1] = 0.0;
+    out[2] = 0.0;
+    out[3] = 0.0;
+    out[4] = 0.0;
+    out[5] = yScale;
+    out[6] = 0.0;
+    out[7] = 0.0;
+    out[8] = -((leftTan - rightTan) * xScale * 0.5);
+    out[9] = (upTan - downTan) * yScale * 0.5;
+    out[10] = far / (near - far);
+    out[11] = -1.0;
+    out[12] = 0.0;
+    out[13] = 0.0;
+    out[14] = far * near / (near - far);
+    out[15] = 0.0;
+    return out;
+  }
+  /**
+   * Generates a orthogonal projection matrix with the given bounds
+   *
+   * @param {mat4} out mat4 frustum matrix will be written into
+   * @param {number} left Left bound of the frustum
+   * @param {number} right Right bound of the frustum
+   * @param {number} bottom Bottom bound of the frustum
+   * @param {number} top Top bound of the frustum
+   * @param {number} near Near bound of the frustum
+   * @param {number} far Far bound of the frustum
+   * @returns {mat4} out
+   */
+
+  function ortho(out, left, right, bottom, top, near, far) {
+    var lr = 1 / (left - right);
+    var bt = 1 / (bottom - top);
+    var nf = 1 / (near - far);
+    out[0] = -2 * lr;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 0;
+    out[4] = 0;
+    out[5] = -2 * bt;
+    out[6] = 0;
+    out[7] = 0;
+    out[8] = 0;
+    out[9] = 0;
+    out[10] = 2 * nf;
+    out[11] = 0;
+    out[12] = (left + right) * lr;
+    out[13] = (top + bottom) * bt;
+    out[14] = (far + near) * nf;
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Generates a look-at matrix with the given eye position, focal point, and up axis.
+   * If you want a matrix that actually makes an object look at another object, you should use targetTo instead.
+   *
+   * @param {mat4} out mat4 frustum matrix will be written into
+   * @param {ReadonlyVec3} eye Position of the viewer
+   * @param {ReadonlyVec3} center Point the viewer is looking at
+   * @param {ReadonlyVec3} up vec3 pointing up
+   * @returns {mat4} out
+   */
+
+  function lookAt(out, eye, center, up) {
+    var x0, x1, x2, y0, y1, y2, z0, z1, z2, len;
+    var eyex = eye[0];
+    var eyey = eye[1];
+    var eyez = eye[2];
+    var upx = up[0];
+    var upy = up[1];
+    var upz = up[2];
+    var centerx = center[0];
+    var centery = center[1];
+    var centerz = center[2];
+
+    if (Math.abs(eyex - centerx) < EPSILON && Math.abs(eyey - centery) < EPSILON && Math.abs(eyez - centerz) < EPSILON) {
+      return identity$3(out);
+    }
+
+    z0 = eyex - centerx;
+    z1 = eyey - centery;
+    z2 = eyez - centerz;
+    len = 1 / Math.hypot(z0, z1, z2);
+    z0 *= len;
+    z1 *= len;
+    z2 *= len;
+    x0 = upy * z2 - upz * z1;
+    x1 = upz * z0 - upx * z2;
+    x2 = upx * z1 - upy * z0;
+    len = Math.hypot(x0, x1, x2);
+
+    if (!len) {
+      x0 = 0;
+      x1 = 0;
+      x2 = 0;
+    } else {
+      len = 1 / len;
+      x0 *= len;
+      x1 *= len;
+      x2 *= len;
+    }
+
+    y0 = z1 * x2 - z2 * x1;
+    y1 = z2 * x0 - z0 * x2;
+    y2 = z0 * x1 - z1 * x0;
+    len = Math.hypot(y0, y1, y2);
+
+    if (!len) {
+      y0 = 0;
+      y1 = 0;
+      y2 = 0;
+    } else {
+      len = 1 / len;
+      y0 *= len;
+      y1 *= len;
+      y2 *= len;
+    }
+
+    out[0] = x0;
+    out[1] = y0;
+    out[2] = z0;
+    out[3] = 0;
+    out[4] = x1;
+    out[5] = y1;
+    out[6] = z1;
+    out[7] = 0;
+    out[8] = x2;
+    out[9] = y2;
+    out[10] = z2;
+    out[11] = 0;
+    out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
+    out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
+    out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Generates a matrix that makes something look at something else.
+   *
+   * @param {mat4} out mat4 frustum matrix will be written into
+   * @param {ReadonlyVec3} eye Position of the viewer
+   * @param {ReadonlyVec3} center Point the viewer is looking at
+   * @param {ReadonlyVec3} up vec3 pointing up
+   * @returns {mat4} out
+   */
+
+  function targetTo(out, eye, target, up) {
+    var eyex = eye[0],
+        eyey = eye[1],
+        eyez = eye[2],
+        upx = up[0],
+        upy = up[1],
+        upz = up[2];
+    var z0 = eyex - target[0],
+        z1 = eyey - target[1],
+        z2 = eyez - target[2];
+    var len = z0 * z0 + z1 * z1 + z2 * z2;
+
+    if (len > 0) {
+      len = 1 / Math.sqrt(len);
+      z0 *= len;
+      z1 *= len;
+      z2 *= len;
+    }
+
+    var x0 = upy * z2 - upz * z1,
+        x1 = upz * z0 - upx * z2,
+        x2 = upx * z1 - upy * z0;
+    len = x0 * x0 + x1 * x1 + x2 * x2;
+
+    if (len > 0) {
+      len = 1 / Math.sqrt(len);
+      x0 *= len;
+      x1 *= len;
+      x2 *= len;
+    }
+
+    out[0] = x0;
+    out[1] = x1;
+    out[2] = x2;
+    out[3] = 0;
+    out[4] = z1 * x2 - z2 * x1;
+    out[5] = z2 * x0 - z0 * x2;
+    out[6] = z0 * x1 - z1 * x0;
+    out[7] = 0;
+    out[8] = z0;
+    out[9] = z1;
+    out[10] = z2;
+    out[11] = 0;
+    out[12] = eyex;
+    out[13] = eyey;
+    out[14] = eyez;
+    out[15] = 1;
+    return out;
+  }
+  /**
+   * Returns a string representation of a mat4
+   *
+   * @param {ReadonlyMat4} a matrix to represent as a string
+   * @returns {String} string representation of the matrix
+   */
+
+  function str$3(a) {
+    return "mat4(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ", " + a[4] + ", " + a[5] + ", " + a[6] + ", " + a[7] + ", " + a[8] + ", " + a[9] + ", " + a[10] + ", " + a[11] + ", " + a[12] + ", " + a[13] + ", " + a[14] + ", " + a[15] + ")";
+  }
+  /**
+   * Returns Frobenius norm of a mat4
+   *
+   * @param {ReadonlyMat4} a the matrix to calculate Frobenius norm of
+   * @returns {Number} Frobenius norm
+   */
+
+  function frob$3(a) {
+    return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15]);
+  }
+  /**
+   * Adds two mat4's
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the first operand
+   * @param {ReadonlyMat4} b the second operand
+   * @returns {mat4} out
+   */
+
+  function add$3(out, a, b) {
+    out[0] = a[0] + b[0];
+    out[1] = a[1] + b[1];
+    out[2] = a[2] + b[2];
+    out[3] = a[3] + b[3];
+    out[4] = a[4] + b[4];
+    out[5] = a[5] + b[5];
+    out[6] = a[6] + b[6];
+    out[7] = a[7] + b[7];
+    out[8] = a[8] + b[8];
+    out[9] = a[9] + b[9];
+    out[10] = a[10] + b[10];
+    out[11] = a[11] + b[11];
+    out[12] = a[12] + b[12];
+    out[13] = a[13] + b[13];
+    out[14] = a[14] + b[14];
+    out[15] = a[15] + b[15];
+    return out;
+  }
+  /**
+   * Subtracts matrix b from matrix a
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the first operand
+   * @param {ReadonlyMat4} b the second operand
+   * @returns {mat4} out
+   */
+
+  function subtract$3(out, a, b) {
+    out[0] = a[0] - b[0];
+    out[1] = a[1] - b[1];
+    out[2] = a[2] - b[2];
+    out[3] = a[3] - b[3];
+    out[4] = a[4] - b[4];
+    out[5] = a[5] - b[5];
+    out[6] = a[6] - b[6];
+    out[7] = a[7] - b[7];
+    out[8] = a[8] - b[8];
+    out[9] = a[9] - b[9];
+    out[10] = a[10] - b[10];
+    out[11] = a[11] - b[11];
+    out[12] = a[12] - b[12];
+    out[13] = a[13] - b[13];
+    out[14] = a[14] - b[14];
+    out[15] = a[15] - b[15];
+    return out;
+  }
+  /**
+   * Multiply each element of the matrix by a scalar.
+   *
+   * @param {mat4} out the receiving matrix
+   * @param {ReadonlyMat4} a the matrix to scale
+   * @param {Number} b amount to scale the matrix's elements by
+   * @returns {mat4} out
+   */
+
+  function multiplyScalar$3(out, a, b) {
+    out[0] = a[0] * b;
+    out[1] = a[1] * b;
+    out[2] = a[2] * b;
+    out[3] = a[3] * b;
+    out[4] = a[4] * b;
+    out[5] = a[5] * b;
+    out[6] = a[6] * b;
+    out[7] = a[7] * b;
+    out[8] = a[8] * b;
+    out[9] = a[9] * b;
+    out[10] = a[10] * b;
+    out[11] = a[11] * b;
+    out[12] = a[12] * b;
+    out[13] = a[13] * b;
+    out[14] = a[14] * b;
+    out[15] = a[15] * b;
+    return out;
+  }
+  /**
+   * Adds two mat4's after multiplying each element of the second operand by a scalar value.
+   *
+   * @param {mat4} out the receiving vector
+   * @param {ReadonlyMat4} a the first operand
+   * @param {ReadonlyMat4} b the second operand
+   * @param {Number} scale the amount to scale b's elements by before adding
+   * @returns {mat4} out
+   */
+
+  function multiplyScalarAndAdd$3(out, a, b, scale) {
+    out[0] = a[0] + b[0] * scale;
+    out[1] = a[1] + b[1] * scale;
+    out[2] = a[2] + b[2] * scale;
+    out[3] = a[3] + b[3] * scale;
+    out[4] = a[4] + b[4] * scale;
+    out[5] = a[5] + b[5] * scale;
+    out[6] = a[6] + b[6] * scale;
+    out[7] = a[7] + b[7] * scale;
+    out[8] = a[8] + b[8] * scale;
+    out[9] = a[9] + b[9] * scale;
+    out[10] = a[10] + b[10] * scale;
+    out[11] = a[11] + b[11] * scale;
+    out[12] = a[12] + b[12] * scale;
+    out[13] = a[13] + b[13] * scale;
+    out[14] = a[14] + b[14] * scale;
+    out[15] = a[15] + b[15] * scale;
+    return out;
+  }
+  /**
+   * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
+   *
+   * @param {ReadonlyMat4} a The first matrix.
+   * @param {ReadonlyMat4} b The second matrix.
+   * @returns {Boolean} True if the matrices are equal, false otherwise.
+   */
+
+  function exactEquals$3(a, b) {
+    return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15];
+  }
+  /**
+   * Returns whether or not the matrices have approximately the same elements in the same position.
+   *
+   * @param {ReadonlyMat4} a The first matrix.
+   * @param {ReadonlyMat4} b The second matrix.
+   * @returns {Boolean} True if the matrices are equal, false otherwise.
+   */
+
+  function equals$4(a, b) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3];
+    var a4 = a[4],
+        a5 = a[5],
+        a6 = a[6],
+        a7 = a[7];
+    var a8 = a[8],
+        a9 = a[9],
+        a10 = a[10],
+        a11 = a[11];
+    var a12 = a[12],
+        a13 = a[13],
+        a14 = a[14],
+        a15 = a[15];
+    var b0 = b[0],
+        b1 = b[1],
+        b2 = b[2],
+        b3 = b[3];
+    var b4 = b[4],
+        b5 = b[5],
+        b6 = b[6],
+        b7 = b[7];
+    var b8 = b[8],
+        b9 = b[9],
+        b10 = b[10],
+        b11 = b[11];
+    var b12 = b[12],
+        b13 = b[13],
+        b14 = b[14],
+        b15 = b[15];
+    return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) && Math.abs(a9 - b9) <= EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) && Math.abs(a10 - b10) <= EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) && Math.abs(a11 - b11) <= EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) && Math.abs(a12 - b12) <= EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) && Math.abs(a13 - b13) <= EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) && Math.abs(a14 - b14) <= EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) && Math.abs(a15 - b15) <= EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15));
+  }
+  /**
+   * Alias for {@link mat4.multiply}
+   * @function
+   */
+
+  var mul$3 = multiply$3;
+  /**
+   * Alias for {@link mat4.subtract}
+   * @function
+   */
+
+  var sub$3 = subtract$3;
+
+  var mat4 = /*#__PURE__*/Object.freeze({
+    __proto__: null,
+    create: create$3,
+    clone: clone$3,
+    copy: copy$3,
+    fromValues: fromValues$3,
+    set: set$3,
+    identity: identity$3,
+    transpose: transpose$2,
+    invert: invert$3,
+    adjoint: adjoint$2,
+    determinant: determinant$3,
+    multiply: multiply$3,
+    translate: translate$2,
+    scale: scale$3,
+    rotate: rotate$3,
+    rotateX: rotateX,
+    rotateY: rotateY,
+    rotateZ: rotateZ,
+    fromTranslation: fromTranslation$2,
+    fromScaling: fromScaling$3,
+    fromRotation: fromRotation$3,
+    fromXRotation: fromXRotation,
+    fromYRotation: fromYRotation,
+    fromZRotation: fromZRotation,
+    fromRotationTranslation: fromRotationTranslation,
+    fromQuat2: fromQuat2,
+    getTranslation: getTranslation,
+    getScaling: getScaling,
+    getRotation: getRotation,
+    fromRotationTranslationScale: fromRotationTranslationScale,
+    fromRotationTranslationScaleOrigin: fromRotationTranslationScaleOrigin,
+    fromQuat: fromQuat$1,
+    frustum: frustum,
+    perspective: perspective,
+    perspectiveFromFieldOfView: perspectiveFromFieldOfView,
+    ortho: ortho,
+    lookAt: lookAt,
+    targetTo: targetTo,
+    str: str$3,
+    frob: frob$3,
+    add: add$3,
+    subtract: subtract$3,
+    multiplyScalar: multiplyScalar$3,
+    multiplyScalarAndAdd: multiplyScalarAndAdd$3,
+    exactEquals: exactEquals$3,
+    equals: equals$4,
+    mul: mul$3,
+    sub: sub$3
+  });
+
+  /**
+   * 3 Dimensional Vector
+   * @module vec3
+   */
+
+  /**
+   * Creates a new, empty vec3
+   *
+   * @returns {vec3} a new 3D vector
+   */
+
+  function create$4() {
+    var out = new ARRAY_TYPE(3);
+
+    if (ARRAY_TYPE != Float32Array) {
+      out[0] = 0;
+      out[1] = 0;
+      out[2] = 0;
+    }
+
+    return out;
+  }
+  /**
+   * Creates a new vec3 initialized with values from an existing vector
+   *
+   * @param {ReadonlyVec3} a vector to clone
+   * @returns {vec3} a new 3D vector
+   */
+
+  function clone$4(a) {
+    var out = new ARRAY_TYPE(3);
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    return out;
+  }
+  /**
+   * Calculates the length of a vec3
+   *
+   * @param {ReadonlyVec3} a vector to calculate length of
+   * @returns {Number} length of a
+   */
+
+  function length(a) {
+    var x = a[0];
+    var y = a[1];
+    var z = a[2];
+    return Math.hypot(x, y, z);
+  }
+  /**
+   * Creates a new vec3 initialized with the given values
+   *
+   * @param {Number} x X component
+   * @param {Number} y Y component
+   * @param {Number} z Z component
+   * @returns {vec3} a new 3D vector
+   */
+
+  function fromValues$4(x, y, z) {
+    var out = new ARRAY_TYPE(3);
+    out[0] = x;
+    out[1] = y;
+    out[2] = z;
+    return out;
+  }
+  /**
+   * Copy the values from one vec3 to another
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the source vector
+   * @returns {vec3} out
+   */
+
+  function copy$4(out, a) {
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    return out;
+  }
+  /**
+   * Set the components of a vec3 to the given values
+   *
+   * @param {vec3} out the receiving vector
+   * @param {Number} x X component
+   * @param {Number} y Y component
+   * @param {Number} z Z component
+   * @returns {vec3} out
+   */
+
+  function set$4(out, x, y, z) {
+    out[0] = x;
+    out[1] = y;
+    out[2] = z;
+    return out;
+  }
+  /**
+   * Adds two vec3's
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @returns {vec3} out
+   */
+
+  function add$4(out, a, b) {
+    out[0] = a[0] + b[0];
+    out[1] = a[1] + b[1];
+    out[2] = a[2] + b[2];
+    return out;
+  }
+  /**
+   * Subtracts vector b from vector a
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @returns {vec3} out
+   */
+
+  function subtract$4(out, a, b) {
+    out[0] = a[0] - b[0];
+    out[1] = a[1] - b[1];
+    out[2] = a[2] - b[2];
+    return out;
+  }
+  /**
+   * Multiplies two vec3's
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @returns {vec3} out
+   */
+
+  function multiply$4(out, a, b) {
+    out[0] = a[0] * b[0];
+    out[1] = a[1] * b[1];
+    out[2] = a[2] * b[2];
+    return out;
+  }
+  /**
+   * Divides two vec3's
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @returns {vec3} out
+   */
+
+  function divide(out, a, b) {
+    out[0] = a[0] / b[0];
+    out[1] = a[1] / b[1];
+    out[2] = a[2] / b[2];
+    return out;
+  }
+  /**
+   * Math.ceil the components of a vec3
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a vector to ceil
+   * @returns {vec3} out
+   */
+
+  function ceil(out, a) {
+    out[0] = Math.ceil(a[0]);
+    out[1] = Math.ceil(a[1]);
+    out[2] = Math.ceil(a[2]);
+    return out;
+  }
+  /**
+   * Math.floor the components of a vec3
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a vector to floor
+   * @returns {vec3} out
+   */
+
+  function floor(out, a) {
+    out[0] = Math.floor(a[0]);
+    out[1] = Math.floor(a[1]);
+    out[2] = Math.floor(a[2]);
+    return out;
+  }
+  /**
+   * Returns the minimum of two vec3's
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @returns {vec3} out
+   */
+
+  function min(out, a, b) {
+    out[0] = Math.min(a[0], b[0]);
+    out[1] = Math.min(a[1], b[1]);
+    out[2] = Math.min(a[2], b[2]);
+    return out;
+  }
+  /**
+   * Returns the maximum of two vec3's
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @returns {vec3} out
+   */
+
+  function max(out, a, b) {
+    out[0] = Math.max(a[0], b[0]);
+    out[1] = Math.max(a[1], b[1]);
+    out[2] = Math.max(a[2], b[2]);
+    return out;
+  }
+  /**
+   * Math.round the components of a vec3
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a vector to round
+   * @returns {vec3} out
+   */
+
+  function round(out, a) {
+    out[0] = Math.round(a[0]);
+    out[1] = Math.round(a[1]);
+    out[2] = Math.round(a[2]);
+    return out;
+  }
+  /**
+   * Scales a vec3 by a scalar number
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the vector to scale
+   * @param {Number} b amount to scale the vector by
+   * @returns {vec3} out
+   */
+
+  function scale$4(out, a, b) {
+    out[0] = a[0] * b;
+    out[1] = a[1] * b;
+    out[2] = a[2] * b;
+    return out;
+  }
+  /**
+   * Adds two vec3's after scaling the second operand by a scalar value
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @param {Number} scale the amount to scale b by before adding
+   * @returns {vec3} out
+   */
+
+  function scaleAndAdd(out, a, b, scale) {
+    out[0] = a[0] + b[0] * scale;
+    out[1] = a[1] + b[1] * scale;
+    out[2] = a[2] + b[2] * scale;
+    return out;
+  }
+  /**
+   * Calculates the euclidian distance between two vec3's
+   *
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @returns {Number} distance between a and b
+   */
+
+  function distance(a, b) {
+    var x = b[0] - a[0];
+    var y = b[1] - a[1];
+    var z = b[2] - a[2];
+    return Math.hypot(x, y, z);
+  }
+  /**
+   * Calculates the squared euclidian distance between two vec3's
+   *
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @returns {Number} squared distance between a and b
+   */
+
+  function squaredDistance(a, b) {
+    var x = b[0] - a[0];
+    var y = b[1] - a[1];
+    var z = b[2] - a[2];
+    return x * x + y * y + z * z;
+  }
+  /**
+   * Calculates the squared length of a vec3
+   *
+   * @param {ReadonlyVec3} a vector to calculate squared length of
+   * @returns {Number} squared length of a
+   */
+
+  function squaredLength(a) {
+    var x = a[0];
+    var y = a[1];
+    var z = a[2];
+    return x * x + y * y + z * z;
+  }
+  /**
+   * Negates the components of a vec3
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a vector to negate
+   * @returns {vec3} out
+   */
+
+  function negate(out, a) {
+    out[0] = -a[0];
+    out[1] = -a[1];
+    out[2] = -a[2];
+    return out;
+  }
+  /**
+   * Returns the inverse of the components of a vec3
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a vector to invert
+   * @returns {vec3} out
+   */
+
+  function inverse(out, a) {
+    out[0] = 1.0 / a[0];
+    out[1] = 1.0 / a[1];
+    out[2] = 1.0 / a[2];
+    return out;
+  }
+  /**
+   * Normalize a vec3
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a vector to normalize
+   * @returns {vec3} out
+   */
+
+  function normalize(out, a) {
+    var x = a[0];
+    var y = a[1];
+    var z = a[2];
+    var len = x * x + y * y + z * z;
+
+    if (len > 0) {
+      //TODO: evaluate use of glm_invsqrt here?
+      len = 1 / Math.sqrt(len);
+    }
+
+    out[0] = a[0] * len;
+    out[1] = a[1] * len;
+    out[2] = a[2] * len;
+    return out;
+  }
+  /**
+   * Calculates the dot product of two vec3's
+   *
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @returns {Number} dot product of a and b
+   */
+
+  function dot(a, b) {
+    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
+  }
+  /**
+   * Computes the cross product of two vec3's
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @returns {vec3} out
+   */
+
+  function cross(out, a, b) {
+    var ax = a[0],
+        ay = a[1],
+        az = a[2];
+    var bx = b[0],
+        by = b[1],
+        bz = b[2];
+    out[0] = ay * bz - az * by;
+    out[1] = az * bx - ax * bz;
+    out[2] = ax * by - ay * bx;
+    return out;
+  }
+  /**
+   * Performs a linear interpolation between two vec3's
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+   * @returns {vec3} out
+   */
+
+  function lerp(out, a, b, t) {
+    var ax = a[0];
+    var ay = a[1];
+    var az = a[2];
+    out[0] = ax + t * (b[0] - ax);
+    out[1] = ay + t * (b[1] - ay);
+    out[2] = az + t * (b[2] - az);
+    return out;
+  }
+  /**
+   * Performs a hermite interpolation with two control points
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @param {ReadonlyVec3} c the third operand
+   * @param {ReadonlyVec3} d the fourth operand
+   * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+   * @returns {vec3} out
+   */
+
+  function hermite(out, a, b, c, d, t) {
+    var factorTimes2 = t * t;
+    var factor1 = factorTimes2 * (2 * t - 3) + 1;
+    var factor2 = factorTimes2 * (t - 2) + t;
+    var factor3 = factorTimes2 * (t - 1);
+    var factor4 = factorTimes2 * (3 - 2 * t);
+    out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
+    out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
+    out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
+    return out;
+  }
+  /**
+   * Performs a bezier interpolation with two control points
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the first operand
+   * @param {ReadonlyVec3} b the second operand
+   * @param {ReadonlyVec3} c the third operand
+   * @param {ReadonlyVec3} d the fourth operand
+   * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+   * @returns {vec3} out
+   */
+
+  function bezier(out, a, b, c, d, t) {
+    var inverseFactor = 1 - t;
+    var inverseFactorTimesTwo = inverseFactor * inverseFactor;
+    var factorTimes2 = t * t;
+    var factor1 = inverseFactorTimesTwo * inverseFactor;
+    var factor2 = 3 * t * inverseFactorTimesTwo;
+    var factor3 = 3 * factorTimes2 * inverseFactor;
+    var factor4 = factorTimes2 * t;
+    out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
+    out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
+    out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
+    return out;
+  }
+  /**
+   * Generates a random vector with the given scale
+   *
+   * @param {vec3} out the receiving vector
+   * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
+   * @returns {vec3} out
+   */
+
+  function random(out, scale) {
+    scale = scale || 1.0;
+    var r = RANDOM() * 2.0 * Math.PI;
+    var z = RANDOM() * 2.0 - 1.0;
+    var zScale = Math.sqrt(1.0 - z * z) * scale;
+    out[0] = Math.cos(r) * zScale;
+    out[1] = Math.sin(r) * zScale;
+    out[2] = z * scale;
+    return out;
+  }
+  /**
+   * Transforms the vec3 with a mat4.
+   * 4th vector component is implicitly '1'
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the vector to transform
+   * @param {ReadonlyMat4} m matrix to transform with
+   * @returns {vec3} out
+   */
+
+  function transformMat4(out, a, m) {
+    var x = a[0],
+        y = a[1],
+        z = a[2];
+    var w = m[3] * x + m[7] * y + m[11] * z + m[15];
+    w = w || 1.0;
+    out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
+    out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
+    out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
+    return out;
+  }
+  /**
+   * Transforms the vec3 with a mat3.
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the vector to transform
+   * @param {ReadonlyMat3} m the 3x3 matrix to transform with
+   * @returns {vec3} out
+   */
+
+  function transformMat3(out, a, m) {
+    var x = a[0],
+        y = a[1],
+        z = a[2];
+    out[0] = x * m[0] + y * m[3] + z * m[6];
+    out[1] = x * m[1] + y * m[4] + z * m[7];
+    out[2] = x * m[2] + y * m[5] + z * m[8];
+    return out;
+  }
+  /**
+   * Transforms the vec3 with a quat
+   * Can also be used for dual quaternions. (Multiply it with the real part)
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec3} a the vector to transform
+   * @param {ReadonlyQuat} q quaternion to transform with
+   * @returns {vec3} out
+   */
+
+  function transformQuat(out, a, q) {
+    // benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed
+    var qx = q[0],
+        qy = q[1],
+        qz = q[2],
+        qw = q[3];
+    var x = a[0],
+        y = a[1],
+        z = a[2]; // var qvec = [qx, qy, qz];
+    // var uv = vec3.cross([], qvec, a);
+
+    var uvx = qy * z - qz * y,
+        uvy = qz * x - qx * z,
+        uvz = qx * y - qy * x; // var uuv = vec3.cross([], qvec, uv);
+
+    var uuvx = qy * uvz - qz * uvy,
+        uuvy = qz * uvx - qx * uvz,
+        uuvz = qx * uvy - qy * uvx; // vec3.scale(uv, uv, 2 * w);
+
+    var w2 = qw * 2;
+    uvx *= w2;
+    uvy *= w2;
+    uvz *= w2; // vec3.scale(uuv, uuv, 2);
+
+    uuvx *= 2;
+    uuvy *= 2;
+    uuvz *= 2; // return vec3.add(out, a, vec3.add(out, uv, uuv));
+
+    out[0] = x + uvx + uuvx;
+    out[1] = y + uvy + uuvy;
+    out[2] = z + uvz + uuvz;
+    return out;
+  }
+  /**
+   * Rotate a 3D vector around the x-axis
+   * @param {vec3} out The receiving vec3
+   * @param {ReadonlyVec3} a The vec3 point to rotate
+   * @param {ReadonlyVec3} b The origin of the rotation
+   * @param {Number} rad The angle of rotation in radians
+   * @returns {vec3} out
+   */
+
+  function rotateX$1(out, a, b, rad) {
+    var p = [],
+        r = []; //Translate point to the origin
+
+    p[0] = a[0] - b[0];
+    p[1] = a[1] - b[1];
+    p[2] = a[2] - b[2]; //perform rotation
+
+    r[0] = p[0];
+    r[1] = p[1] * Math.cos(rad) - p[2] * Math.sin(rad);
+    r[2] = p[1] * Math.sin(rad) + p[2] * Math.cos(rad); //translate to correct position
+
+    out[0] = r[0] + b[0];
+    out[1] = r[1] + b[1];
+    out[2] = r[2] + b[2];
+    return out;
+  }
+  /**
+   * Rotate a 3D vector around the y-axis
+   * @param {vec3} out The receiving vec3
+   * @param {ReadonlyVec3} a The vec3 point to rotate
+   * @param {ReadonlyVec3} b The origin of the rotation
+   * @param {Number} rad The angle of rotation in radians
+   * @returns {vec3} out
+   */
+
+  function rotateY$1(out, a, b, rad) {
+    var p = [],
+        r = []; //Translate point to the origin
+
+    p[0] = a[0] - b[0];
+    p[1] = a[1] - b[1];
+    p[2] = a[2] - b[2]; //perform rotation
+
+    r[0] = p[2] * Math.sin(rad) + p[0] * Math.cos(rad);
+    r[1] = p[1];
+    r[2] = p[2] * Math.cos(rad) - p[0] * Math.sin(rad); //translate to correct position
+
+    out[0] = r[0] + b[0];
+    out[1] = r[1] + b[1];
+    out[2] = r[2] + b[2];
+    return out;
+  }
+  /**
+   * Rotate a 3D vector around the z-axis
+   * @param {vec3} out The receiving vec3
+   * @param {ReadonlyVec3} a The vec3 point to rotate
+   * @param {ReadonlyVec3} b The origin of the rotation
+   * @param {Number} rad The angle of rotation in radians
+   * @returns {vec3} out
+   */
+
+  function rotateZ$1(out, a, b, rad) {
+    var p = [],
+        r = []; //Translate point to the origin
+
+    p[0] = a[0] - b[0];
+    p[1] = a[1] - b[1];
+    p[2] = a[2] - b[2]; //perform rotation
+
+    r[0] = p[0] * Math.cos(rad) - p[1] * Math.sin(rad);
+    r[1] = p[0] * Math.sin(rad) + p[1] * Math.cos(rad);
+    r[2] = p[2]; //translate to correct position
+
+    out[0] = r[0] + b[0];
+    out[1] = r[1] + b[1];
+    out[2] = r[2] + b[2];
+    return out;
+  }
+  /**
+   * Get the angle between two 3D vectors
+   * @param {ReadonlyVec3} a The first operand
+   * @param {ReadonlyVec3} b The second operand
+   * @returns {Number} The angle in radians
+   */
+
+  function angle(a, b) {
+    var ax = a[0],
+        ay = a[1],
+        az = a[2],
+        bx = b[0],
+        by = b[1],
+        bz = b[2],
+        mag1 = Math.sqrt(ax * ax + ay * ay + az * az),
+        mag2 = Math.sqrt(bx * bx + by * by + bz * bz),
+        mag = mag1 * mag2,
+        cosine = mag && dot(a, b) / mag;
+    return Math.acos(Math.min(Math.max(cosine, -1), 1));
+  }
+  /**
+   * Set the components of a vec3 to zero
+   *
+   * @param {vec3} out the receiving vector
+   * @returns {vec3} out
+   */
+
+  function zero(out) {
+    out[0] = 0.0;
+    out[1] = 0.0;
+    out[2] = 0.0;
+    return out;
+  }
+  /**
+   * Returns a string representation of a vector
+   *
+   * @param {ReadonlyVec3} a vector to represent as a string
+   * @returns {String} string representation of the vector
+   */
+
+  function str$4(a) {
+    return "vec3(" + a[0] + ", " + a[1] + ", " + a[2] + ")";
+  }
+  /**
+   * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
+   *
+   * @param {ReadonlyVec3} a The first vector.
+   * @param {ReadonlyVec3} b The second vector.
+   * @returns {Boolean} True if the vectors are equal, false otherwise.
+   */
+
+  function exactEquals$4(a, b) {
+    return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
+  }
+  /**
+   * Returns whether or not the vectors have approximately the same elements in the same position.
+   *
+   * @param {ReadonlyVec3} a The first vector.
+   * @param {ReadonlyVec3} b The second vector.
+   * @returns {Boolean} True if the vectors are equal, false otherwise.
+   */
+
+  function equals$5(a, b) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2];
+    var b0 = b[0],
+        b1 = b[1],
+        b2 = b[2];
+    return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2));
+  }
+  /**
+   * Alias for {@link vec3.subtract}
+   * @function
+   */
+
+  var sub$4 = subtract$4;
+  /**
+   * Alias for {@link vec3.multiply}
+   * @function
+   */
+
+  var mul$4 = multiply$4;
+  /**
+   * Alias for {@link vec3.divide}
+   * @function
+   */
+
+  var div = divide;
+  /**
+   * Alias for {@link vec3.distance}
+   * @function
+   */
+
+  var dist = distance;
+  /**
+   * Alias for {@link vec3.squaredDistance}
+   * @function
+   */
+
+  var sqrDist = squaredDistance;
+  /**
+   * Alias for {@link vec3.length}
+   * @function
+   */
+
+  var len = length;
+  /**
+   * Alias for {@link vec3.squaredLength}
+   * @function
+   */
+
+  var sqrLen = squaredLength;
+  /**
+   * Perform some operation over an array of vec3s.
+   *
+   * @param {Array} a the array of vectors to iterate over
+   * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
+   * @param {Number} offset Number of elements to skip at the beginning of the array
+   * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
+   * @param {Function} fn Function to call for each vector in the array
+   * @param {Object} [arg] additional argument to pass to fn
+   * @returns {Array} a
+   * @function
+   */
+
+  var forEach = function () {
+    var vec = create$4();
+    return function (a, stride, offset, count, fn, arg) {
+      var i, l;
+
+      if (!stride) {
+        stride = 3;
+      }
+
+      if (!offset) {
+        offset = 0;
+      }
+
+      if (count) {
+        l = Math.min(count * stride + offset, a.length);
+      } else {
+        l = a.length;
+      }
+
+      for (i = offset; i < l; i += stride) {
+        vec[0] = a[i];
+        vec[1] = a[i + 1];
+        vec[2] = a[i + 2];
+        fn(vec, vec, arg);
+        a[i] = vec[0];
+        a[i + 1] = vec[1];
+        a[i + 2] = vec[2];
+      }
+
+      return a;
+    };
+  }();
+
+  var vec3 = /*#__PURE__*/Object.freeze({
+    __proto__: null,
+    create: create$4,
+    clone: clone$4,
+    length: length,
+    fromValues: fromValues$4,
+    copy: copy$4,
+    set: set$4,
+    add: add$4,
+    subtract: subtract$4,
+    multiply: multiply$4,
+    divide: divide,
+    ceil: ceil,
+    floor: floor,
+    min: min,
+    max: max,
+    round: round,
+    scale: scale$4,
+    scaleAndAdd: scaleAndAdd,
+    distance: distance,
+    squaredDistance: squaredDistance,
+    squaredLength: squaredLength,
+    negate: negate,
+    inverse: inverse,
+    normalize: normalize,
+    dot: dot,
+    cross: cross,
+    lerp: lerp,
+    hermite: hermite,
+    bezier: bezier,
+    random: random,
+    transformMat4: transformMat4,
+    transformMat3: transformMat3,
+    transformQuat: transformQuat,
+    rotateX: rotateX$1,
+    rotateY: rotateY$1,
+    rotateZ: rotateZ$1,
+    angle: angle,
+    zero: zero,
+    str: str$4,
+    exactEquals: exactEquals$4,
+    equals: equals$5,
+    sub: sub$4,
+    mul: mul$4,
+    div: div,
+    dist: dist,
+    sqrDist: sqrDist,
+    len: len,
+    sqrLen: sqrLen,
+    forEach: forEach
+  });
+
+  /**
+   * 4 Dimensional Vector
+   * @module vec4
+   */
+
+  /**
+   * Creates a new, empty vec4
+   *
+   * @returns {vec4} a new 4D vector
+   */
+
+  function create$5() {
+    var out = new ARRAY_TYPE(4);
+
+    if (ARRAY_TYPE != Float32Array) {
+      out[0] = 0;
+      out[1] = 0;
+      out[2] = 0;
+      out[3] = 0;
+    }
+
+    return out;
+  }
+  /**
+   * Creates a new vec4 initialized with values from an existing vector
+   *
+   * @param {ReadonlyVec4} a vector to clone
+   * @returns {vec4} a new 4D vector
+   */
+
+  function clone$5(a) {
+    var out = new ARRAY_TYPE(4);
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    return out;
+  }
+  /**
+   * Creates a new vec4 initialized with the given values
+   *
+   * @param {Number} x X component
+   * @param {Number} y Y component
+   * @param {Number} z Z component
+   * @param {Number} w W component
+   * @returns {vec4} a new 4D vector
+   */
+
+  function fromValues$5(x, y, z, w) {
+    var out = new ARRAY_TYPE(4);
+    out[0] = x;
+    out[1] = y;
+    out[2] = z;
+    out[3] = w;
+    return out;
+  }
+  /**
+   * Copy the values from one vec4 to another
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the source vector
+   * @returns {vec4} out
+   */
+
+  function copy$5(out, a) {
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    return out;
+  }
+  /**
+   * Set the components of a vec4 to the given values
+   *
+   * @param {vec4} out the receiving vector
+   * @param {Number} x X component
+   * @param {Number} y Y component
+   * @param {Number} z Z component
+   * @param {Number} w W component
+   * @returns {vec4} out
+   */
+
+  function set$5(out, x, y, z, w) {
+    out[0] = x;
+    out[1] = y;
+    out[2] = z;
+    out[3] = w;
+    return out;
+  }
+  /**
+   * Adds two vec4's
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @returns {vec4} out
+   */
+
+  function add$5(out, a, b) {
+    out[0] = a[0] + b[0];
+    out[1] = a[1] + b[1];
+    out[2] = a[2] + b[2];
+    out[3] = a[3] + b[3];
+    return out;
+  }
+  /**
+   * Subtracts vector b from vector a
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @returns {vec4} out
+   */
+
+  function subtract$5(out, a, b) {
+    out[0] = a[0] - b[0];
+    out[1] = a[1] - b[1];
+    out[2] = a[2] - b[2];
+    out[3] = a[3] - b[3];
+    return out;
+  }
+  /**
+   * Multiplies two vec4's
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @returns {vec4} out
+   */
+
+  function multiply$5(out, a, b) {
+    out[0] = a[0] * b[0];
+    out[1] = a[1] * b[1];
+    out[2] = a[2] * b[2];
+    out[3] = a[3] * b[3];
+    return out;
+  }
+  /**
+   * Divides two vec4's
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @returns {vec4} out
+   */
+
+  function divide$1(out, a, b) {
+    out[0] = a[0] / b[0];
+    out[1] = a[1] / b[1];
+    out[2] = a[2] / b[2];
+    out[3] = a[3] / b[3];
+    return out;
+  }
+  /**
+   * Math.ceil the components of a vec4
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a vector to ceil
+   * @returns {vec4} out
+   */
+
+  function ceil$1(out, a) {
+    out[0] = Math.ceil(a[0]);
+    out[1] = Math.ceil(a[1]);
+    out[2] = Math.ceil(a[2]);
+    out[3] = Math.ceil(a[3]);
+    return out;
+  }
+  /**
+   * Math.floor the components of a vec4
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a vector to floor
+   * @returns {vec4} out
+   */
+
+  function floor$1(out, a) {
+    out[0] = Math.floor(a[0]);
+    out[1] = Math.floor(a[1]);
+    out[2] = Math.floor(a[2]);
+    out[3] = Math.floor(a[3]);
+    return out;
+  }
+  /**
+   * Returns the minimum of two vec4's
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @returns {vec4} out
+   */
+
+  function min$1(out, a, b) {
+    out[0] = Math.min(a[0], b[0]);
+    out[1] = Math.min(a[1], b[1]);
+    out[2] = Math.min(a[2], b[2]);
+    out[3] = Math.min(a[3], b[3]);
+    return out;
+  }
+  /**
+   * Returns the maximum of two vec4's
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @returns {vec4} out
+   */
+
+  function max$1(out, a, b) {
+    out[0] = Math.max(a[0], b[0]);
+    out[1] = Math.max(a[1], b[1]);
+    out[2] = Math.max(a[2], b[2]);
+    out[3] = Math.max(a[3], b[3]);
+    return out;
+  }
+  /**
+   * Math.round the components of a vec4
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a vector to round
+   * @returns {vec4} out
+   */
+
+  function round$1(out, a) {
+    out[0] = Math.round(a[0]);
+    out[1] = Math.round(a[1]);
+    out[2] = Math.round(a[2]);
+    out[3] = Math.round(a[3]);
+    return out;
+  }
+  /**
+   * Scales a vec4 by a scalar number
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the vector to scale
+   * @param {Number} b amount to scale the vector by
+   * @returns {vec4} out
+   */
+
+  function scale$5(out, a, b) {
+    out[0] = a[0] * b;
+    out[1] = a[1] * b;
+    out[2] = a[2] * b;
+    out[3] = a[3] * b;
+    return out;
+  }
+  /**
+   * Adds two vec4's after scaling the second operand by a scalar value
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @param {Number} scale the amount to scale b by before adding
+   * @returns {vec4} out
+   */
+
+  function scaleAndAdd$1(out, a, b, scale) {
+    out[0] = a[0] + b[0] * scale;
+    out[1] = a[1] + b[1] * scale;
+    out[2] = a[2] + b[2] * scale;
+    out[3] = a[3] + b[3] * scale;
+    return out;
+  }
+  /**
+   * Calculates the euclidian distance between two vec4's
+   *
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @returns {Number} distance between a and b
+   */
+
+  function distance$1(a, b) {
+    var x = b[0] - a[0];
+    var y = b[1] - a[1];
+    var z = b[2] - a[2];
+    var w = b[3] - a[3];
+    return Math.hypot(x, y, z, w);
+  }
+  /**
+   * Calculates the squared euclidian distance between two vec4's
+   *
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @returns {Number} squared distance between a and b
+   */
+
+  function squaredDistance$1(a, b) {
+    var x = b[0] - a[0];
+    var y = b[1] - a[1];
+    var z = b[2] - a[2];
+    var w = b[3] - a[3];
+    return x * x + y * y + z * z + w * w;
+  }
+  /**
+   * Calculates the length of a vec4
+   *
+   * @param {ReadonlyVec4} a vector to calculate length of
+   * @returns {Number} length of a
+   */
+
+  function length$1(a) {
+    var x = a[0];
+    var y = a[1];
+    var z = a[2];
+    var w = a[3];
+    return Math.hypot(x, y, z, w);
+  }
+  /**
+   * Calculates the squared length of a vec4
+   *
+   * @param {ReadonlyVec4} a vector to calculate squared length of
+   * @returns {Number} squared length of a
+   */
+
+  function squaredLength$1(a) {
+    var x = a[0];
+    var y = a[1];
+    var z = a[2];
+    var w = a[3];
+    return x * x + y * y + z * z + w * w;
+  }
+  /**
+   * Negates the components of a vec4
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a vector to negate
+   * @returns {vec4} out
+   */
+
+  function negate$1(out, a) {
+    out[0] = -a[0];
+    out[1] = -a[1];
+    out[2] = -a[2];
+    out[3] = -a[3];
+    return out;
+  }
+  /**
+   * Returns the inverse of the components of a vec4
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a vector to invert
+   * @returns {vec4} out
+   */
+
+  function inverse$1(out, a) {
+    out[0] = 1.0 / a[0];
+    out[1] = 1.0 / a[1];
+    out[2] = 1.0 / a[2];
+    out[3] = 1.0 / a[3];
+    return out;
+  }
+  /**
+   * Normalize a vec4
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a vector to normalize
+   * @returns {vec4} out
+   */
+
+  function normalize$1(out, a) {
+    var x = a[0];
+    var y = a[1];
+    var z = a[2];
+    var w = a[3];
+    var len = x * x + y * y + z * z + w * w;
+
+    if (len > 0) {
+      len = 1 / Math.sqrt(len);
+    }
+
+    out[0] = x * len;
+    out[1] = y * len;
+    out[2] = z * len;
+    out[3] = w * len;
+    return out;
+  }
+  /**
+   * Calculates the dot product of two vec4's
+   *
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @returns {Number} dot product of a and b
+   */
+
+  function dot$1(a, b) {
+    return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
+  }
+  /**
+   * Returns the cross-product of three vectors in a 4-dimensional space
+   *
+   * @param {ReadonlyVec4} result the receiving vector
+   * @param {ReadonlyVec4} U the first vector
+   * @param {ReadonlyVec4} V the second vector
+   * @param {ReadonlyVec4} W the third vector
+   * @returns {vec4} result
+   */
+
+  function cross$1(out, u, v, w) {
+    var A = v[0] * w[1] - v[1] * w[0],
+        B = v[0] * w[2] - v[2] * w[0],
+        C = v[0] * w[3] - v[3] * w[0],
+        D = v[1] * w[2] - v[2] * w[1],
+        E = v[1] * w[3] - v[3] * w[1],
+        F = v[2] * w[3] - v[3] * w[2];
+    var G = u[0];
+    var H = u[1];
+    var I = u[2];
+    var J = u[3];
+    out[0] = H * F - I * E + J * D;
+    out[1] = -(G * F) + I * C - J * B;
+    out[2] = G * E - H * C + J * A;
+    out[3] = -(G * D) + H * B - I * A;
+    return out;
+  }
+  /**
+   * Performs a linear interpolation between two vec4's
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the first operand
+   * @param {ReadonlyVec4} b the second operand
+   * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+   * @returns {vec4} out
+   */
+
+  function lerp$1(out, a, b, t) {
+    var ax = a[0];
+    var ay = a[1];
+    var az = a[2];
+    var aw = a[3];
+    out[0] = ax + t * (b[0] - ax);
+    out[1] = ay + t * (b[1] - ay);
+    out[2] = az + t * (b[2] - az);
+    out[3] = aw + t * (b[3] - aw);
+    return out;
+  }
+  /**
+   * Generates a random vector with the given scale
+   *
+   * @param {vec4} out the receiving vector
+   * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
+   * @returns {vec4} out
+   */
+
+  function random$1(out, scale) {
+    scale = scale || 1.0; // Marsaglia, George. Choosing a Point from the Surface of a
+    // Sphere. Ann. Math. Statist. 43 (1972), no. 2, 645--646.
+    // http://projecteuclid.org/euclid.aoms/1177692644;
+
+    var v1, v2, v3, v4;
+    var s1, s2;
+
+    do {
+      v1 = RANDOM() * 2 - 1;
+      v2 = RANDOM() * 2 - 1;
+      s1 = v1 * v1 + v2 * v2;
+    } while (s1 >= 1);
+
+    do {
+      v3 = RANDOM() * 2 - 1;
+      v4 = RANDOM() * 2 - 1;
+      s2 = v3 * v3 + v4 * v4;
+    } while (s2 >= 1);
+
+    var d = Math.sqrt((1 - s1) / s2);
+    out[0] = scale * v1;
+    out[1] = scale * v2;
+    out[2] = scale * v3 * d;
+    out[3] = scale * v4 * d;
+    return out;
+  }
+  /**
+   * Transforms the vec4 with a mat4.
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the vector to transform
+   * @param {ReadonlyMat4} m matrix to transform with
+   * @returns {vec4} out
+   */
+
+  function transformMat4$1(out, a, m) {
+    var x = a[0],
+        y = a[1],
+        z = a[2],
+        w = a[3];
+    out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
+    out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
+    out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
+    out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
+    return out;
+  }
+  /**
+   * Transforms the vec4 with a quat
+   *
+   * @param {vec4} out the receiving vector
+   * @param {ReadonlyVec4} a the vector to transform
+   * @param {ReadonlyQuat} q quaternion to transform with
+   * @returns {vec4} out
+   */
+
+  function transformQuat$1(out, a, q) {
+    var x = a[0],
+        y = a[1],
+        z = a[2];
+    var qx = q[0],
+        qy = q[1],
+        qz = q[2],
+        qw = q[3]; // calculate quat * vec
+
+    var ix = qw * x + qy * z - qz * y;
+    var iy = qw * y + qz * x - qx * z;
+    var iz = qw * z + qx * y - qy * x;
+    var iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat
+
+    out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
+    out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
+    out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
+    out[3] = a[3];
+    return out;
+  }
+  /**
+   * Set the components of a vec4 to zero
+   *
+   * @param {vec4} out the receiving vector
+   * @returns {vec4} out
+   */
+
+  function zero$1(out) {
+    out[0] = 0.0;
+    out[1] = 0.0;
+    out[2] = 0.0;
+    out[3] = 0.0;
+    return out;
+  }
+  /**
+   * Returns a string representation of a vector
+   *
+   * @param {ReadonlyVec4} a vector to represent as a string
+   * @returns {String} string representation of the vector
+   */
+
+  function str$5(a) {
+    return "vec4(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ")";
+  }
+  /**
+   * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
+   *
+   * @param {ReadonlyVec4} a The first vector.
+   * @param {ReadonlyVec4} b The second vector.
+   * @returns {Boolean} True if the vectors are equal, false otherwise.
+   */
+
+  function exactEquals$5(a, b) {
+    return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
+  }
+  /**
+   * Returns whether or not the vectors have approximately the same elements in the same position.
+   *
+   * @param {ReadonlyVec4} a The first vector.
+   * @param {ReadonlyVec4} b The second vector.
+   * @returns {Boolean} True if the vectors are equal, false otherwise.
+   */
+
+  function equals$6(a, b) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3];
+    var b0 = b[0],
+        b1 = b[1],
+        b2 = b[2],
+        b3 = b[3];
+    return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));
+  }
+  /**
+   * Alias for {@link vec4.subtract}
+   * @function
+   */
+
+  var sub$5 = subtract$5;
+  /**
+   * Alias for {@link vec4.multiply}
+   * @function
+   */
+
+  var mul$5 = multiply$5;
+  /**
+   * Alias for {@link vec4.divide}
+   * @function
+   */
+
+  var div$1 = divide$1;
+  /**
+   * Alias for {@link vec4.distance}
+   * @function
+   */
+
+  var dist$1 = distance$1;
+  /**
+   * Alias for {@link vec4.squaredDistance}
+   * @function
+   */
+
+  var sqrDist$1 = squaredDistance$1;
+  /**
+   * Alias for {@link vec4.length}
+   * @function
+   */
+
+  var len$1 = length$1;
+  /**
+   * Alias for {@link vec4.squaredLength}
+   * @function
+   */
+
+  var sqrLen$1 = squaredLength$1;
+  /**
+   * Perform some operation over an array of vec4s.
+   *
+   * @param {Array} a the array of vectors to iterate over
+   * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
+   * @param {Number} offset Number of elements to skip at the beginning of the array
+   * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array
+   * @param {Function} fn Function to call for each vector in the array
+   * @param {Object} [arg] additional argument to pass to fn
+   * @returns {Array} a
+   * @function
+   */
+
+  var forEach$1 = function () {
+    var vec = create$5();
+    return function (a, stride, offset, count, fn, arg) {
+      var i, l;
+
+      if (!stride) {
+        stride = 4;
+      }
+
+      if (!offset) {
+        offset = 0;
+      }
+
+      if (count) {
+        l = Math.min(count * stride + offset, a.length);
+      } else {
+        l = a.length;
+      }
+
+      for (i = offset; i < l; i += stride) {
+        vec[0] = a[i];
+        vec[1] = a[i + 1];
+        vec[2] = a[i + 2];
+        vec[3] = a[i + 3];
+        fn(vec, vec, arg);
+        a[i] = vec[0];
+        a[i + 1] = vec[1];
+        a[i + 2] = vec[2];
+        a[i + 3] = vec[3];
+      }
+
+      return a;
+    };
+  }();
+
+  var vec4 = /*#__PURE__*/Object.freeze({
+    __proto__: null,
+    create: create$5,
+    clone: clone$5,
+    fromValues: fromValues$5,
+    copy: copy$5,
+    set: set$5,
+    add: add$5,
+    subtract: subtract$5,
+    multiply: multiply$5,
+    divide: divide$1,
+    ceil: ceil$1,
+    floor: floor$1,
+    min: min$1,
+    max: max$1,
+    round: round$1,
+    scale: scale$5,
+    scaleAndAdd: scaleAndAdd$1,
+    distance: distance$1,
+    squaredDistance: squaredDistance$1,
+    length: length$1,
+    squaredLength: squaredLength$1,
+    negate: negate$1,
+    inverse: inverse$1,
+    normalize: normalize$1,
+    dot: dot$1,
+    cross: cross$1,
+    lerp: lerp$1,
+    random: random$1,
+    transformMat4: transformMat4$1,
+    transformQuat: transformQuat$1,
+    zero: zero$1,
+    str: str$5,
+    exactEquals: exactEquals$5,
+    equals: equals$6,
+    sub: sub$5,
+    mul: mul$5,
+    div: div$1,
+    dist: dist$1,
+    sqrDist: sqrDist$1,
+    len: len$1,
+    sqrLen: sqrLen$1,
+    forEach: forEach$1
+  });
+
+  /**
+   * Quaternion
+   * @module quat
+   */
+
+  /**
+   * Creates a new identity quat
+   *
+   * @returns {quat} a new quaternion
+   */
+
+  function create$6() {
+    var out = new ARRAY_TYPE(4);
+
+    if (ARRAY_TYPE != Float32Array) {
+      out[0] = 0;
+      out[1] = 0;
+      out[2] = 0;
+    }
+
+    out[3] = 1;
+    return out;
+  }
+  /**
+   * Set a quat to the identity quaternion
+   *
+   * @param {quat} out the receiving quaternion
+   * @returns {quat} out
+   */
+
+  function identity$4(out) {
+    out[0] = 0;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 1;
+    return out;
+  }
+  /**
+   * Sets a quat from the given angle and rotation axis,
+   * then returns it.
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyVec3} axis the axis around which to rotate
+   * @param {Number} rad the angle in radians
+   * @returns {quat} out
+   **/
+
+  function setAxisAngle(out, axis, rad) {
+    rad = rad * 0.5;
+    var s = Math.sin(rad);
+    out[0] = s * axis[0];
+    out[1] = s * axis[1];
+    out[2] = s * axis[2];
+    out[3] = Math.cos(rad);
+    return out;
+  }
+  /**
+   * Gets the rotation axis and angle for a given
+   *  quaternion. If a quaternion is created with
+   *  setAxisAngle, this method will return the same
+   *  values as providied in the original parameter list
+   *  OR functionally equivalent values.
+   * Example: The quaternion formed by axis [0, 0, 1] and
+   *  angle -90 is the same as the quaternion formed by
+   *  [0, 0, 1] and 270. This method favors the latter.
+   * @param  {vec3} out_axis  Vector receiving the axis of rotation
+   * @param  {ReadonlyQuat} q     Quaternion to be decomposed
+   * @return {Number}     Angle, in radians, of the rotation
+   */
+
+  function getAxisAngle(out_axis, q) {
+    var rad = Math.acos(q[3]) * 2.0;
+    var s = Math.sin(rad / 2.0);
+
+    if (s > EPSILON) {
+      out_axis[0] = q[0] / s;
+      out_axis[1] = q[1] / s;
+      out_axis[2] = q[2] / s;
+    } else {
+      // If s is zero, return any axis (no rotation - axis does not matter)
+      out_axis[0] = 1;
+      out_axis[1] = 0;
+      out_axis[2] = 0;
+    }
+
+    return rad;
+  }
+  /**
+   * Gets the angular distance between two unit quaternions
+   *
+   * @param  {ReadonlyQuat} a     Origin unit quaternion
+   * @param  {ReadonlyQuat} b     Destination unit quaternion
+   * @return {Number}     Angle, in radians, between the two quaternions
+   */
+
+  function getAngle(a, b) {
+    var dotproduct = dot$2(a, b);
+    return Math.acos(2 * dotproduct * dotproduct - 1);
+  }
+  /**
+   * Multiplies two quat's
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a the first operand
+   * @param {ReadonlyQuat} b the second operand
+   * @returns {quat} out
+   */
+
+  function multiply$6(out, a, b) {
+    var ax = a[0],
+        ay = a[1],
+        az = a[2],
+        aw = a[3];
+    var bx = b[0],
+        by = b[1],
+        bz = b[2],
+        bw = b[3];
+    out[0] = ax * bw + aw * bx + ay * bz - az * by;
+    out[1] = ay * bw + aw * by + az * bx - ax * bz;
+    out[2] = az * bw + aw * bz + ax * by - ay * bx;
+    out[3] = aw * bw - ax * bx - ay * by - az * bz;
+    return out;
+  }
+  /**
+   * Rotates a quaternion by the given angle about the X axis
+   *
+   * @param {quat} out quat receiving operation result
+   * @param {ReadonlyQuat} a quat to rotate
+   * @param {number} rad angle (in radians) to rotate
+   * @returns {quat} out
+   */
+
+  function rotateX$2(out, a, rad) {
+    rad *= 0.5;
+    var ax = a[0],
+        ay = a[1],
+        az = a[2],
+        aw = a[3];
+    var bx = Math.sin(rad),
+        bw = Math.cos(rad);
+    out[0] = ax * bw + aw * bx;
+    out[1] = ay * bw + az * bx;
+    out[2] = az * bw - ay * bx;
+    out[3] = aw * bw - ax * bx;
+    return out;
+  }
+  /**
+   * Rotates a quaternion by the given angle about the Y axis
+   *
+   * @param {quat} out quat receiving operation result
+   * @param {ReadonlyQuat} a quat to rotate
+   * @param {number} rad angle (in radians) to rotate
+   * @returns {quat} out
+   */
+
+  function rotateY$2(out, a, rad) {
+    rad *= 0.5;
+    var ax = a[0],
+        ay = a[1],
+        az = a[2],
+        aw = a[3];
+    var by = Math.sin(rad),
+        bw = Math.cos(rad);
+    out[0] = ax * bw - az * by;
+    out[1] = ay * bw + aw * by;
+    out[2] = az * bw + ax * by;
+    out[3] = aw * bw - ay * by;
+    return out;
+  }
+  /**
+   * Rotates a quaternion by the given angle about the Z axis
+   *
+   * @param {quat} out quat receiving operation result
+   * @param {ReadonlyQuat} a quat to rotate
+   * @param {number} rad angle (in radians) to rotate
+   * @returns {quat} out
+   */
+
+  function rotateZ$2(out, a, rad) {
+    rad *= 0.5;
+    var ax = a[0],
+        ay = a[1],
+        az = a[2],
+        aw = a[3];
+    var bz = Math.sin(rad),
+        bw = Math.cos(rad);
+    out[0] = ax * bw + ay * bz;
+    out[1] = ay * bw - ax * bz;
+    out[2] = az * bw + aw * bz;
+    out[3] = aw * bw - az * bz;
+    return out;
+  }
+  /**
+   * Calculates the W component of a quat from the X, Y, and Z components.
+   * Assumes that quaternion is 1 unit in length.
+   * Any existing W component will be ignored.
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a quat to calculate W component of
+   * @returns {quat} out
+   */
+
+  function calculateW(out, a) {
+    var x = a[0],
+        y = a[1],
+        z = a[2];
+    out[0] = x;
+    out[1] = y;
+    out[2] = z;
+    out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
+    return out;
+  }
+  /**
+   * Calculate the exponential of a unit quaternion.
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a quat to calculate the exponential of
+   * @returns {quat} out
+   */
+
+  function exp(out, a) {
+    var x = a[0],
+        y = a[1],
+        z = a[2],
+        w = a[3];
+    var r = Math.sqrt(x * x + y * y + z * z);
+    var et = Math.exp(w);
+    var s = r > 0 ? et * Math.sin(r) / r : 0;
+    out[0] = x * s;
+    out[1] = y * s;
+    out[2] = z * s;
+    out[3] = et * Math.cos(r);
+    return out;
+  }
+  /**
+   * Calculate the natural logarithm of a unit quaternion.
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a quat to calculate the exponential of
+   * @returns {quat} out
+   */
+
+  function ln(out, a) {
+    var x = a[0],
+        y = a[1],
+        z = a[2],
+        w = a[3];
+    var r = Math.sqrt(x * x + y * y + z * z);
+    var t = r > 0 ? Math.atan2(r, w) / r : 0;
+    out[0] = x * t;
+    out[1] = y * t;
+    out[2] = z * t;
+    out[3] = 0.5 * Math.log(x * x + y * y + z * z + w * w);
+    return out;
+  }
+  /**
+   * Calculate the scalar power of a unit quaternion.
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a quat to calculate the exponential of
+   * @param {Number} b amount to scale the quaternion by
+   * @returns {quat} out
+   */
+
+  function pow(out, a, b) {
+    ln(out, a);
+    scale$6(out, out, b);
+    exp(out, out);
+    return out;
+  }
+  /**
+   * Performs a spherical linear interpolation between two quat
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a the first operand
+   * @param {ReadonlyQuat} b the second operand
+   * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+   * @returns {quat} out
+   */
+
+  function slerp(out, a, b, t) {
+    // benchmarks:
+    //    http://jsperf.com/quaternion-slerp-implementations
+    var ax = a[0],
+        ay = a[1],
+        az = a[2],
+        aw = a[3];
+    var bx = b[0],
+        by = b[1],
+        bz = b[2],
+        bw = b[3];
+    var omega, cosom, sinom, scale0, scale1; // calc cosine
+
+    cosom = ax * bx + ay * by + az * bz + aw * bw; // adjust signs (if necessary)
+
+    if (cosom < 0.0) {
+      cosom = -cosom;
+      bx = -bx;
+      by = -by;
+      bz = -bz;
+      bw = -bw;
+    } // calculate coefficients
+
+
+    if (1.0 - cosom > EPSILON) {
+      // standard case (slerp)
+      omega = Math.acos(cosom);
+      sinom = Math.sin(omega);
+      scale0 = Math.sin((1.0 - t) * omega) / sinom;
+      scale1 = Math.sin(t * omega) / sinom;
+    } else {
+      // "from" and "to" quaternions are very close
+      //  ... so we can do a linear interpolation
+      scale0 = 1.0 - t;
+      scale1 = t;
+    } // calculate final values
+
+
+    out[0] = scale0 * ax + scale1 * bx;
+    out[1] = scale0 * ay + scale1 * by;
+    out[2] = scale0 * az + scale1 * bz;
+    out[3] = scale0 * aw + scale1 * bw;
+    return out;
+  }
+  /**
+   * Generates a random unit quaternion
+   *
+   * @param {quat} out the receiving quaternion
+   * @returns {quat} out
+   */
+
+  function random$2(out) {
+    // Implementation of http://planning.cs.uiuc.edu/node198.html
+    // TODO: Calling random 3 times is probably not the fastest solution
+    var u1 = RANDOM();
+    var u2 = RANDOM();
+    var u3 = RANDOM();
+    var sqrt1MinusU1 = Math.sqrt(1 - u1);
+    var sqrtU1 = Math.sqrt(u1);
+    out[0] = sqrt1MinusU1 * Math.sin(2.0 * Math.PI * u2);
+    out[1] = sqrt1MinusU1 * Math.cos(2.0 * Math.PI * u2);
+    out[2] = sqrtU1 * Math.sin(2.0 * Math.PI * u3);
+    out[3] = sqrtU1 * Math.cos(2.0 * Math.PI * u3);
+    return out;
+  }
+  /**
+   * Calculates the inverse of a quat
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a quat to calculate inverse of
+   * @returns {quat} out
+   */
+
+  function invert$4(out, a) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3];
+    var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
+    var invDot = dot ? 1.0 / dot : 0; // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
+
+    out[0] = -a0 * invDot;
+    out[1] = -a1 * invDot;
+    out[2] = -a2 * invDot;
+    out[3] = a3 * invDot;
+    return out;
+  }
+  /**
+   * Calculates the conjugate of a quat
+   * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a quat to calculate conjugate of
+   * @returns {quat} out
+   */
+
+  function conjugate(out, a) {
+    out[0] = -a[0];
+    out[1] = -a[1];
+    out[2] = -a[2];
+    out[3] = a[3];
+    return out;
+  }
+  /**
+   * Creates a quaternion from the given 3x3 rotation matrix.
+   *
+   * NOTE: The resultant quaternion is not normalized, so you should be sure
+   * to renormalize the quaternion yourself where necessary.
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyMat3} m rotation matrix
+   * @returns {quat} out
+   * @function
+   */
+
+  function fromMat3(out, m) {
+    // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
+    // article "Quaternion Calculus and Fast Animation".
+    var fTrace = m[0] + m[4] + m[8];
+    var fRoot;
+
+    if (fTrace > 0.0) {
+      // |w| > 1/2, may as well choose w > 1/2
+      fRoot = Math.sqrt(fTrace + 1.0); // 2w
+
+      out[3] = 0.5 * fRoot;
+      fRoot = 0.5 / fRoot; // 1/(4w)
+
+      out[0] = (m[5] - m[7]) * fRoot;
+      out[1] = (m[6] - m[2]) * fRoot;
+      out[2] = (m[1] - m[3]) * fRoot;
+    } else {
+      // |w| <= 1/2
+      var i = 0;
+      if (m[4] > m[0]) i = 1;
+      if (m[8] > m[i * 3 + i]) i = 2;
+      var j = (i + 1) % 3;
+      var k = (i + 2) % 3;
+      fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0);
+      out[i] = 0.5 * fRoot;
+      fRoot = 0.5 / fRoot;
+      out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot;
+      out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;
+      out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;
+    }
+
+    return out;
+  }
+  /**
+   * Creates a quaternion from the given euler angle x, y, z.
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {x} Angle to rotate around X axis in degrees.
+   * @param {y} Angle to rotate around Y axis in degrees.
+   * @param {z} Angle to rotate around Z axis in degrees.
+   * @returns {quat} out
+   * @function
+   */
+
+  function fromEuler(out, x, y, z) {
+    var halfToRad = 0.5 * Math.PI / 180.0;
+    x *= halfToRad;
+    y *= halfToRad;
+    z *= halfToRad;
+    var sx = Math.sin(x);
+    var cx = Math.cos(x);
+    var sy = Math.sin(y);
+    var cy = Math.cos(y);
+    var sz = Math.sin(z);
+    var cz = Math.cos(z);
+    out[0] = sx * cy * cz - cx * sy * sz;
+    out[1] = cx * sy * cz + sx * cy * sz;
+    out[2] = cx * cy * sz - sx * sy * cz;
+    out[3] = cx * cy * cz + sx * sy * sz;
+    return out;
+  }
+  /**
+   * Returns a string representation of a quatenion
+   *
+   * @param {ReadonlyQuat} a vector to represent as a string
+   * @returns {String} string representation of the vector
+   */
+
+  function str$6(a) {
+    return "quat(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ")";
+  }
+  /**
+   * Creates a new quat initialized with values from an existing quaternion
+   *
+   * @param {ReadonlyQuat} a quaternion to clone
+   * @returns {quat} a new quaternion
+   * @function
+   */
+
+  var clone$6 = clone$5;
+  /**
+   * Creates a new quat initialized with the given values
+   *
+   * @param {Number} x X component
+   * @param {Number} y Y component
+   * @param {Number} z Z component
+   * @param {Number} w W component
+   * @returns {quat} a new quaternion
+   * @function
+   */
+
+  var fromValues$6 = fromValues$5;
+  /**
+   * Copy the values from one quat to another
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a the source quaternion
+   * @returns {quat} out
+   * @function
+   */
+
+  var copy$6 = copy$5;
+  /**
+   * Set the components of a quat to the given values
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {Number} x X component
+   * @param {Number} y Y component
+   * @param {Number} z Z component
+   * @param {Number} w W component
+   * @returns {quat} out
+   * @function
+   */
+
+  var set$6 = set$5;
+  /**
+   * Adds two quat's
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a the first operand
+   * @param {ReadonlyQuat} b the second operand
+   * @returns {quat} out
+   * @function
+   */
+
+  var add$6 = add$5;
+  /**
+   * Alias for {@link quat.multiply}
+   * @function
+   */
+
+  var mul$6 = multiply$6;
+  /**
+   * Scales a quat by a scalar number
+   *
+   * @param {quat} out the receiving vector
+   * @param {ReadonlyQuat} a the vector to scale
+   * @param {Number} b amount to scale the vector by
+   * @returns {quat} out
+   * @function
+   */
+
+  var scale$6 = scale$5;
+  /**
+   * Calculates the dot product of two quat's
+   *
+   * @param {ReadonlyQuat} a the first operand
+   * @param {ReadonlyQuat} b the second operand
+   * @returns {Number} dot product of a and b
+   * @function
+   */
+
+  var dot$2 = dot$1;
+  /**
+   * Performs a linear interpolation between two quat's
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a the first operand
+   * @param {ReadonlyQuat} b the second operand
+   * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+   * @returns {quat} out
+   * @function
+   */
+
+  var lerp$2 = lerp$1;
+  /**
+   * Calculates the length of a quat
+   *
+   * @param {ReadonlyQuat} a vector to calculate length of
+   * @returns {Number} length of a
+   */
+
+  var length$2 = length$1;
+  /**
+   * Alias for {@link quat.length}
+   * @function
+   */
+
+  var len$2 = length$2;
+  /**
+   * Calculates the squared length of a quat
+   *
+   * @param {ReadonlyQuat} a vector to calculate squared length of
+   * @returns {Number} squared length of a
+   * @function
+   */
+
+  var squaredLength$2 = squaredLength$1;
+  /**
+   * Alias for {@link quat.squaredLength}
+   * @function
+   */
+
+  var sqrLen$2 = squaredLength$2;
+  /**
+   * Normalize a quat
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a quaternion to normalize
+   * @returns {quat} out
+   * @function
+   */
+
+  var normalize$2 = normalize$1;
+  /**
+   * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===)
+   *
+   * @param {ReadonlyQuat} a The first quaternion.
+   * @param {ReadonlyQuat} b The second quaternion.
+   * @returns {Boolean} True if the vectors are equal, false otherwise.
+   */
+
+  var exactEquals$6 = exactEquals$5;
+  /**
+   * Returns whether or not the quaternions have approximately the same elements in the same position.
+   *
+   * @param {ReadonlyQuat} a The first vector.
+   * @param {ReadonlyQuat} b The second vector.
+   * @returns {Boolean} True if the vectors are equal, false otherwise.
+   */
+
+  var equals$7 = equals$6;
+  /**
+   * Sets a quaternion to represent the shortest rotation from one
+   * vector to another.
+   *
+   * Both vectors are assumed to be unit length.
+   *
+   * @param {quat} out the receiving quaternion.
+   * @param {ReadonlyVec3} a the initial vector
+   * @param {ReadonlyVec3} b the destination vector
+   * @returns {quat} out
+   */
+
+  var rotationTo = function () {
+    var tmpvec3 = create$4();
+    var xUnitVec3 = fromValues$4(1, 0, 0);
+    var yUnitVec3 = fromValues$4(0, 1, 0);
+    return function (out, a, b) {
+      var dot$1 = dot(a, b);
+
+      if (dot$1 < -0.999999) {
+        cross(tmpvec3, xUnitVec3, a);
+        if (len(tmpvec3) < 0.000001) cross(tmpvec3, yUnitVec3, a);
+        normalize(tmpvec3, tmpvec3);
+        setAxisAngle(out, tmpvec3, Math.PI);
+        return out;
+      } else if (dot$1 > 0.999999) {
+        out[0] = 0;
+        out[1] = 0;
+        out[2] = 0;
+        out[3] = 1;
+        return out;
+      } else {
+        cross(tmpvec3, a, b);
+        out[0] = tmpvec3[0];
+        out[1] = tmpvec3[1];
+        out[2] = tmpvec3[2];
+        out[3] = 1 + dot$1;
+        return normalize$2(out, out);
+      }
+    };
+  }();
+  /**
+   * Performs a spherical linear interpolation with two control points
+   *
+   * @param {quat} out the receiving quaternion
+   * @param {ReadonlyQuat} a the first operand
+   * @param {ReadonlyQuat} b the second operand
+   * @param {ReadonlyQuat} c the third operand
+   * @param {ReadonlyQuat} d the fourth operand
+   * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+   * @returns {quat} out
+   */
+
+  var sqlerp = function () {
+    var temp1 = create$6();
+    var temp2 = create$6();
+    return function (out, a, b, c, d, t) {
+      slerp(temp1, a, d, t);
+      slerp(temp2, b, c, t);
+      slerp(out, temp1, temp2, 2 * t * (1 - t));
+      return out;
+    };
+  }();
+  /**
+   * Sets the specified quaternion with values corresponding to the given
+   * axes. Each axis is a vec3 and is expected to be unit length and
+   * perpendicular to all other specified axes.
+   *
+   * @param {ReadonlyVec3} view  the vector representing the viewing direction
+   * @param {ReadonlyVec3} right the vector representing the local "right" direction
+   * @param {ReadonlyVec3} up    the vector representing the local "up" direction
+   * @returns {quat} out
+   */
+
+  var setAxes = function () {
+    var matr = create$2();
+    return function (out, view, right, up) {
+      matr[0] = right[0];
+      matr[3] = right[1];
+      matr[6] = right[2];
+      matr[1] = up[0];
+      matr[4] = up[1];
+      matr[7] = up[2];
+      matr[2] = -view[0];
+      matr[5] = -view[1];
+      matr[8] = -view[2];
+      return normalize$2(out, fromMat3(out, matr));
+    };
+  }();
+
+  var quat = /*#__PURE__*/Object.freeze({
+    __proto__: null,
+    create: create$6,
+    identity: identity$4,
+    setAxisAngle: setAxisAngle,
+    getAxisAngle: getAxisAngle,
+    getAngle: getAngle,
+    multiply: multiply$6,
+    rotateX: rotateX$2,
+    rotateY: rotateY$2,
+    rotateZ: rotateZ$2,
+    calculateW: calculateW,
+    exp: exp,
+    ln: ln,
+    pow: pow,
+    slerp: slerp,
+    random: random$2,
+    invert: invert$4,
+    conjugate: conjugate,
+    fromMat3: fromMat3,
+    fromEuler: fromEuler,
+    str: str$6,
+    clone: clone$6,
+    fromValues: fromValues$6,
+    copy: copy$6,
+    set: set$6,
+    add: add$6,
+    mul: mul$6,
+    scale: scale$6,
+    dot: dot$2,
+    lerp: lerp$2,
+    length: length$2,
+    len: len$2,
+    squaredLength: squaredLength$2,
+    sqrLen: sqrLen$2,
+    normalize: normalize$2,
+    exactEquals: exactEquals$6,
+    equals: equals$7,
+    rotationTo: rotationTo,
+    sqlerp: sqlerp,
+    setAxes: setAxes
+  });
+
+  /**
+   * Dual Quaternion<br>
+   * Format: [real, dual]<br>
+   * Quaternion format: XYZW<br>
+   * Make sure to have normalized dual quaternions, otherwise the functions may not work as intended.<br>
+   * @module quat2
+   */
+
+  /**
+   * Creates a new identity dual quat
+   *
+   * @returns {quat2} a new dual quaternion [real -> rotation, dual -> translation]
+   */
+
+  function create$7() {
+    var dq = new ARRAY_TYPE(8);
+
+    if (ARRAY_TYPE != Float32Array) {
+      dq[0] = 0;
+      dq[1] = 0;
+      dq[2] = 0;
+      dq[4] = 0;
+      dq[5] = 0;
+      dq[6] = 0;
+      dq[7] = 0;
+    }
+
+    dq[3] = 1;
+    return dq;
+  }
+  /**
+   * Creates a new quat initialized with values from an existing quaternion
+   *
+   * @param {ReadonlyQuat2} a dual quaternion to clone
+   * @returns {quat2} new dual quaternion
+   * @function
+   */
+
+  function clone$7(a) {
+    var dq = new ARRAY_TYPE(8);
+    dq[0] = a[0];
+    dq[1] = a[1];
+    dq[2] = a[2];
+    dq[3] = a[3];
+    dq[4] = a[4];
+    dq[5] = a[5];
+    dq[6] = a[6];
+    dq[7] = a[7];
+    return dq;
+  }
+  /**
+   * Creates a new dual quat initialized with the given values
+   *
+   * @param {Number} x1 X component
+   * @param {Number} y1 Y component
+   * @param {Number} z1 Z component
+   * @param {Number} w1 W component
+   * @param {Number} x2 X component
+   * @param {Number} y2 Y component
+   * @param {Number} z2 Z component
+   * @param {Number} w2 W component
+   * @returns {quat2} new dual quaternion
+   * @function
+   */
+
+  function fromValues$7(x1, y1, z1, w1, x2, y2, z2, w2) {
+    var dq = new ARRAY_TYPE(8);
+    dq[0] = x1;
+    dq[1] = y1;
+    dq[2] = z1;
+    dq[3] = w1;
+    dq[4] = x2;
+    dq[5] = y2;
+    dq[6] = z2;
+    dq[7] = w2;
+    return dq;
+  }
+  /**
+   * Creates a new dual quat from the given values (quat and translation)
+   *
+   * @param {Number} x1 X component
+   * @param {Number} y1 Y component
+   * @param {Number} z1 Z component
+   * @param {Number} w1 W component
+   * @param {Number} x2 X component (translation)
+   * @param {Number} y2 Y component (translation)
+   * @param {Number} z2 Z component (translation)
+   * @returns {quat2} new dual quaternion
+   * @function
+   */
+
+  function fromRotationTranslationValues(x1, y1, z1, w1, x2, y2, z2) {
+    var dq = new ARRAY_TYPE(8);
+    dq[0] = x1;
+    dq[1] = y1;
+    dq[2] = z1;
+    dq[3] = w1;
+    var ax = x2 * 0.5,
+        ay = y2 * 0.5,
+        az = z2 * 0.5;
+    dq[4] = ax * w1 + ay * z1 - az * y1;
+    dq[5] = ay * w1 + az * x1 - ax * z1;
+    dq[6] = az * w1 + ax * y1 - ay * x1;
+    dq[7] = -ax * x1 - ay * y1 - az * z1;
+    return dq;
+  }
+  /**
+   * Creates a dual quat from a quaternion and a translation
+   *
+   * @param {ReadonlyQuat2} dual quaternion receiving operation result
+   * @param {ReadonlyQuat} q a normalized quaternion
+   * @param {ReadonlyVec3} t tranlation vector
+   * @returns {quat2} dual quaternion receiving operation result
+   * @function
+   */
+
+  function fromRotationTranslation$1(out, q, t) {
+    var ax = t[0] * 0.5,
+        ay = t[1] * 0.5,
+        az = t[2] * 0.5,
+        bx = q[0],
+        by = q[1],
+        bz = q[2],
+        bw = q[3];
+    out[0] = bx;
+    out[1] = by;
+    out[2] = bz;
+    out[3] = bw;
+    out[4] = ax * bw + ay * bz - az * by;
+    out[5] = ay * bw + az * bx - ax * bz;
+    out[6] = az * bw + ax * by - ay * bx;
+    out[7] = -ax * bx - ay * by - az * bz;
+    return out;
+  }
+  /**
+   * Creates a dual quat from a translation
+   *
+   * @param {ReadonlyQuat2} dual quaternion receiving operation result
+   * @param {ReadonlyVec3} t translation vector
+   * @returns {quat2} dual quaternion receiving operation result
+   * @function
+   */
+
+  function fromTranslation$3(out, t) {
+    out[0] = 0;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 1;
+    out[4] = t[0] * 0.5;
+    out[5] = t[1] * 0.5;
+    out[6] = t[2] * 0.5;
+    out[7] = 0;
+    return out;
+  }
+  /**
+   * Creates a dual quat from a quaternion
+   *
+   * @param {ReadonlyQuat2} dual quaternion receiving operation result
+   * @param {ReadonlyQuat} q the quaternion
+   * @returns {quat2} dual quaternion receiving operation result
+   * @function
+   */
+
+  function fromRotation$4(out, q) {
+    out[0] = q[0];
+    out[1] = q[1];
+    out[2] = q[2];
+    out[3] = q[3];
+    out[4] = 0;
+    out[5] = 0;
+    out[6] = 0;
+    out[7] = 0;
+    return out;
+  }
+  /**
+   * Creates a new dual quat from a matrix (4x4)
+   *
+   * @param {quat2} out the dual quaternion
+   * @param {ReadonlyMat4} a the matrix
+   * @returns {quat2} dual quat receiving operation result
+   * @function
+   */
+
+  function fromMat4$1(out, a) {
+    //TODO Optimize this
+    var outer = create$6();
+    getRotation(outer, a);
+    var t = new ARRAY_TYPE(3);
+    getTranslation(t, a);
+    fromRotationTranslation$1(out, outer, t);
+    return out;
+  }
+  /**
+   * Copy the values from one dual quat to another
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a the source dual quaternion
+   * @returns {quat2} out
+   * @function
+   */
+
+  function copy$7(out, a) {
+    out[0] = a[0];
+    out[1] = a[1];
+    out[2] = a[2];
+    out[3] = a[3];
+    out[4] = a[4];
+    out[5] = a[5];
+    out[6] = a[6];
+    out[7] = a[7];
+    return out;
+  }
+  /**
+   * Set a dual quat to the identity dual quaternion
+   *
+   * @param {quat2} out the receiving quaternion
+   * @returns {quat2} out
+   */
+
+  function identity$5(out) {
+    out[0] = 0;
+    out[1] = 0;
+    out[2] = 0;
+    out[3] = 1;
+    out[4] = 0;
+    out[5] = 0;
+    out[6] = 0;
+    out[7] = 0;
+    return out;
+  }
+  /**
+   * Set the components of a dual quat to the given values
+   *
+   * @param {quat2} out the receiving quaternion
+   * @param {Number} x1 X component
+   * @param {Number} y1 Y component
+   * @param {Number} z1 Z component
+   * @param {Number} w1 W component
+   * @param {Number} x2 X component
+   * @param {Number} y2 Y component
+   * @param {Number} z2 Z component
+   * @param {Number} w2 W component
+   * @returns {quat2} out
+   * @function
+   */
+
+  function set$7(out, x1, y1, z1, w1, x2, y2, z2, w2) {
+    out[0] = x1;
+    out[1] = y1;
+    out[2] = z1;
+    out[3] = w1;
+    out[4] = x2;
+    out[5] = y2;
+    out[6] = z2;
+    out[7] = w2;
+    return out;
+  }
+  /**
+   * Gets the real part of a dual quat
+   * @param  {quat} out real part
+   * @param  {ReadonlyQuat2} a Dual Quaternion
+   * @return {quat} real part
+   */
+
+  var getReal = copy$6;
+  /**
+   * Gets the dual part of a dual quat
+   * @param  {quat} out dual part
+   * @param  {ReadonlyQuat2} a Dual Quaternion
+   * @return {quat} dual part
+   */
+
+  function getDual(out, a) {
+    out[0] = a[4];
+    out[1] = a[5];
+    out[2] = a[6];
+    out[3] = a[7];
+    return out;
+  }
+  /**
+   * Set the real component of a dual quat to the given quaternion
+   *
+   * @param {quat2} out the receiving quaternion
+   * @param {ReadonlyQuat} q a quaternion representing the real part
+   * @returns {quat2} out
+   * @function
+   */
+
+  var setReal = copy$6;
+  /**
+   * Set the dual component of a dual quat to the given quaternion
+   *
+   * @param {quat2} out the receiving quaternion
+   * @param {ReadonlyQuat} q a quaternion representing the dual part
+   * @returns {quat2} out
+   * @function
+   */
+
+  function setDual(out, q) {
+    out[4] = q[0];
+    out[5] = q[1];
+    out[6] = q[2];
+    out[7] = q[3];
+    return out;
+  }
+  /**
+   * Gets the translation of a normalized dual quat
+   * @param  {vec3} out translation
+   * @param  {ReadonlyQuat2} a Dual Quaternion to be decomposed
+   * @return {vec3} translation
+   */
+
+  function getTranslation$1(out, a) {
+    var ax = a[4],
+        ay = a[5],
+        az = a[6],
+        aw = a[7],
+        bx = -a[0],
+        by = -a[1],
+        bz = -a[2],
+        bw = a[3];
+    out[0] = (ax * bw + aw * bx + ay * bz - az * by) * 2;
+    out[1] = (ay * bw + aw * by + az * bx - ax * bz) * 2;
+    out[2] = (az * bw + aw * bz + ax * by - ay * bx) * 2;
+    return out;
+  }
+  /**
+   * Translates a dual quat by the given vector
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a the dual quaternion to translate
+   * @param {ReadonlyVec3} v vector to translate by
+   * @returns {quat2} out
+   */
+
+  function translate$3(out, a, v) {
+    var ax1 = a[0],
+        ay1 = a[1],
+        az1 = a[2],
+        aw1 = a[3],
+        bx1 = v[0] * 0.5,
+        by1 = v[1] * 0.5,
+        bz1 = v[2] * 0.5,
+        ax2 = a[4],
+        ay2 = a[5],
+        az2 = a[6],
+        aw2 = a[7];
+    out[0] = ax1;
+    out[1] = ay1;
+    out[2] = az1;
+    out[3] = aw1;
+    out[4] = aw1 * bx1 + ay1 * bz1 - az1 * by1 + ax2;
+    out[5] = aw1 * by1 + az1 * bx1 - ax1 * bz1 + ay2;
+    out[6] = aw1 * bz1 + ax1 * by1 - ay1 * bx1 + az2;
+    out[7] = -ax1 * bx1 - ay1 * by1 - az1 * bz1 + aw2;
+    return out;
+  }
+  /**
+   * Rotates a dual quat around the X axis
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a the dual quaternion to rotate
+   * @param {number} rad how far should the rotation be
+   * @returns {quat2} out
+   */
+
+  function rotateX$3(out, a, rad) {
+    var bx = -a[0],
+        by = -a[1],
+        bz = -a[2],
+        bw = a[3],
+        ax = a[4],
+        ay = a[5],
+        az = a[6],
+        aw = a[7],
+        ax1 = ax * bw + aw * bx + ay * bz - az * by,
+        ay1 = ay * bw + aw * by + az * bx - ax * bz,
+        az1 = az * bw + aw * bz + ax * by - ay * bx,
+        aw1 = aw * bw - ax * bx - ay * by - az * bz;
+    rotateX$2(out, a, rad);
+    bx = out[0];
+    by = out[1];
+    bz = out[2];
+    bw = out[3];
+    out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
+    out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
+    out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
+    out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
+    return out;
+  }
+  /**
+   * Rotates a dual quat around the Y axis
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a the dual quaternion to rotate
+   * @param {number} rad how far should the rotation be
+   * @returns {quat2} out
+   */
+
+  function rotateY$3(out, a, rad) {
+    var bx = -a[0],
+        by = -a[1],
+        bz = -a[2],
+        bw = a[3],
+        ax = a[4],
+        ay = a[5],
+        az = a[6],
+        aw = a[7],
+        ax1 = ax * bw + aw * bx + ay * bz - az * by,
+        ay1 = ay * bw + aw * by + az * bx - ax * bz,
+        az1 = az * bw + aw * bz + ax * by - ay * bx,
+        aw1 = aw * bw - ax * bx - ay * by - az * bz;
+    rotateY$2(out, a, rad);
+    bx = out[0];
+    by = out[1];
+    bz = out[2];
+    bw = out[3];
+    out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
+    out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
+    out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
+    out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
+    return out;
+  }
+  /**
+   * Rotates a dual quat around the Z axis
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a the dual quaternion to rotate
+   * @param {number} rad how far should the rotation be
+   * @returns {quat2} out
+   */
+
+  function rotateZ$3(out, a, rad) {
+    var bx = -a[0],
+        by = -a[1],
+        bz = -a[2],
+        bw = a[3],
+        ax = a[4],
+        ay = a[5],
+        az = a[6],
+        aw = a[7],
+        ax1 = ax * bw + aw * bx + ay * bz - az * by,
+        ay1 = ay * bw + aw * by + az * bx - ax * bz,
+        az1 = az * bw + aw * bz + ax * by - ay * bx,
+        aw1 = aw * bw - ax * bx - ay * by - az * bz;
+    rotateZ$2(out, a, rad);
+    bx = out[0];
+    by = out[1];
+    bz = out[2];
+    bw = out[3];
+    out[4] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
+    out[5] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
+    out[6] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
+    out[7] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
+    return out;
+  }
+  /**
+   * Rotates a dual quat by a given quaternion (a * q)
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a the dual quaternion to rotate
+   * @param {ReadonlyQuat} q quaternion to rotate by
+   * @returns {quat2} out
+   */
+
+  function rotateByQuatAppend(out, a, q) {
+    var qx = q[0],
+        qy = q[1],
+        qz = q[2],
+        qw = q[3],
+        ax = a[0],
+        ay = a[1],
+        az = a[2],
+        aw = a[3];
+    out[0] = ax * qw + aw * qx + ay * qz - az * qy;
+    out[1] = ay * qw + aw * qy + az * qx - ax * qz;
+    out[2] = az * qw + aw * qz + ax * qy - ay * qx;
+    out[3] = aw * qw - ax * qx - ay * qy - az * qz;
+    ax = a[4];
+    ay = a[5];
+    az = a[6];
+    aw = a[7];
+    out[4] = ax * qw + aw * qx + ay * qz - az * qy;
+    out[5] = ay * qw + aw * qy + az * qx - ax * qz;
+    out[6] = az * qw + aw * qz + ax * qy - ay * qx;
+    out[7] = aw * qw - ax * qx - ay * qy - az * qz;
+    return out;
+  }
+  /**
+   * Rotates a dual quat by a given quaternion (q * a)
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat} q quaternion to rotate by
+   * @param {ReadonlyQuat2} a the dual quaternion to rotate
+   * @returns {quat2} out
+   */
+
+  function rotateByQuatPrepend(out, q, a) {
+    var qx = q[0],
+        qy = q[1],
+        qz = q[2],
+        qw = q[3],
+        bx = a[0],
+        by = a[1],
+        bz = a[2],
+        bw = a[3];
+    out[0] = qx * bw + qw * bx + qy * bz - qz * by;
+    out[1] = qy * bw + qw * by + qz * bx - qx * bz;
+    out[2] = qz * bw + qw * bz + qx * by - qy * bx;
+    out[3] = qw * bw - qx * bx - qy * by - qz * bz;
+    bx = a[4];
+    by = a[5];
+    bz = a[6];
+    bw = a[7];
+    out[4] = qx * bw + qw * bx + qy * bz - qz * by;
+    out[5] = qy * bw + qw * by + qz * bx - qx * bz;
+    out[6] = qz * bw + qw * bz + qx * by - qy * bx;
+    out[7] = qw * bw - qx * bx - qy * by - qz * bz;
+    return out;
+  }
+  /**
+   * Rotates a dual quat around a given axis. Does the normalisation automatically
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a the dual quaternion to rotate
+   * @param {ReadonlyVec3} axis the axis to rotate around
+   * @param {Number} rad how far the rotation should be
+   * @returns {quat2} out
+   */
+
+  function rotateAroundAxis(out, a, axis, rad) {
+    //Special case for rad = 0
+    if (Math.abs(rad) < EPSILON) {
+      return copy$7(out, a);
+    }
+
+    var axisLength = Math.hypot(axis[0], axis[1], axis[2]);
+    rad = rad * 0.5;
+    var s = Math.sin(rad);
+    var bx = s * axis[0] / axisLength;
+    var by = s * axis[1] / axisLength;
+    var bz = s * axis[2] / axisLength;
+    var bw = Math.cos(rad);
+    var ax1 = a[0],
+        ay1 = a[1],
+        az1 = a[2],
+        aw1 = a[3];
+    out[0] = ax1 * bw + aw1 * bx + ay1 * bz - az1 * by;
+    out[1] = ay1 * bw + aw1 * by + az1 * bx - ax1 * bz;
+    out[2] = az1 * bw + aw1 * bz + ax1 * by - ay1 * bx;
+    out[3] = aw1 * bw - ax1 * bx - ay1 * by - az1 * bz;
+    var ax = a[4],
+        ay = a[5],
+        az = a[6],
+        aw = a[7];
+    out[4] = ax * bw + aw * bx + ay * bz - az * by;
+    out[5] = ay * bw + aw * by + az * bx - ax * bz;
+    out[6] = az * bw + aw * bz + ax * by - ay * bx;
+    out[7] = aw * bw - ax * bx - ay * by - az * bz;
+    return out;
+  }
+  /**
+   * Adds two dual quat's
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a the first operand
+   * @param {ReadonlyQuat2} b the second operand
+   * @returns {quat2} out
+   * @function
+   */
+
+  function add$7(out, a, b) {
+    out[0] = a[0] + b[0];
+    out[1] = a[1] + b[1];
+    out[2] = a[2] + b[2];
+    out[3] = a[3] + b[3];
+    out[4] = a[4] + b[4];
+    out[5] = a[5] + b[5];
+    out[6] = a[6] + b[6];
+    out[7] = a[7] + b[7];
+    return out;
+  }
+  /**
+   * Multiplies two dual quat's
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a the first operand
+   * @param {ReadonlyQuat2} b the second operand
+   * @returns {quat2} out
+   */
+
+  function multiply$7(out, a, b) {
+    var ax0 = a[0],
+        ay0 = a[1],
+        az0 = a[2],
+        aw0 = a[3],
+        bx1 = b[4],
+        by1 = b[5],
+        bz1 = b[6],
+        bw1 = b[7],
+        ax1 = a[4],
+        ay1 = a[5],
+        az1 = a[6],
+        aw1 = a[7],
+        bx0 = b[0],
+        by0 = b[1],
+        bz0 = b[2],
+        bw0 = b[3];
+    out[0] = ax0 * bw0 + aw0 * bx0 + ay0 * bz0 - az0 * by0;
+    out[1] = ay0 * bw0 + aw0 * by0 + az0 * bx0 - ax0 * bz0;
+    out[2] = az0 * bw0 + aw0 * bz0 + ax0 * by0 - ay0 * bx0;
+    out[3] = aw0 * bw0 - ax0 * bx0 - ay0 * by0 - az0 * bz0;
+    out[4] = ax0 * bw1 + aw0 * bx1 + ay0 * bz1 - az0 * by1 + ax1 * bw0 + aw1 * bx0 + ay1 * bz0 - az1 * by0;
+    out[5] = ay0 * bw1 + aw0 * by1 + az0 * bx1 - ax0 * bz1 + ay1 * bw0 + aw1 * by0 + az1 * bx0 - ax1 * bz0;
+    out[6] = az0 * bw1 + aw0 * bz1 + ax0 * by1 - ay0 * bx1 + az1 * bw0 + aw1 * bz0 + ax1 * by0 - ay1 * bx0;
+    out[7] = aw0 * bw1 - ax0 * bx1 - ay0 * by1 - az0 * bz1 + aw1 * bw0 - ax1 * bx0 - ay1 * by0 - az1 * bz0;
+    return out;
+  }
+  /**
+   * Alias for {@link quat2.multiply}
+   * @function
+   */
+
+  var mul$7 = multiply$7;
+  /**
+   * Scales a dual quat by a scalar number
+   *
+   * @param {quat2} out the receiving dual quat
+   * @param {ReadonlyQuat2} a the dual quat to scale
+   * @param {Number} b amount to scale the dual quat by
+   * @returns {quat2} out
+   * @function
+   */
+
+  function scale$7(out, a, b) {
+    out[0] = a[0] * b;
+    out[1] = a[1] * b;
+    out[2] = a[2] * b;
+    out[3] = a[3] * b;
+    out[4] = a[4] * b;
+    out[5] = a[5] * b;
+    out[6] = a[6] * b;
+    out[7] = a[7] * b;
+    return out;
+  }
+  /**
+   * Calculates the dot product of two dual quat's (The dot product of the real parts)
+   *
+   * @param {ReadonlyQuat2} a the first operand
+   * @param {ReadonlyQuat2} b the second operand
+   * @returns {Number} dot product of a and b
+   * @function
+   */
+
+  var dot$3 = dot$2;
+  /**
+   * Performs a linear interpolation between two dual quats's
+   * NOTE: The resulting dual quaternions won't always be normalized (The error is most noticeable when t = 0.5)
+   *
+   * @param {quat2} out the receiving dual quat
+   * @param {ReadonlyQuat2} a the first operand
+   * @param {ReadonlyQuat2} b the second operand
+   * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+   * @returns {quat2} out
+   */
+
+  function lerp$3(out, a, b, t) {
+    var mt = 1 - t;
+    if (dot$3(a, b) < 0) t = -t;
+    out[0] = a[0] * mt + b[0] * t;
+    out[1] = a[1] * mt + b[1] * t;
+    out[2] = a[2] * mt + b[2] * t;
+    out[3] = a[3] * mt + b[3] * t;
+    out[4] = a[4] * mt + b[4] * t;
+    out[5] = a[5] * mt + b[5] * t;
+    out[6] = a[6] * mt + b[6] * t;
+    out[7] = a[7] * mt + b[7] * t;
+    return out;
+  }
+  /**
+   * Calculates the inverse of a dual quat. If they are normalized, conjugate is cheaper
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a dual quat to calculate inverse of
+   * @returns {quat2} out
+   */
+
+  function invert$5(out, a) {
+    var sqlen = squaredLength$3(a);
+    out[0] = -a[0] / sqlen;
+    out[1] = -a[1] / sqlen;
+    out[2] = -a[2] / sqlen;
+    out[3] = a[3] / sqlen;
+    out[4] = -a[4] / sqlen;
+    out[5] = -a[5] / sqlen;
+    out[6] = -a[6] / sqlen;
+    out[7] = a[7] / sqlen;
+    return out;
+  }
+  /**
+   * Calculates the conjugate of a dual quat
+   * If the dual quaternion is normalized, this function is faster than quat2.inverse and produces the same result.
+   *
+   * @param {quat2} out the receiving quaternion
+   * @param {ReadonlyQuat2} a quat to calculate conjugate of
+   * @returns {quat2} out
+   */
+
+  function conjugate$1(out, a) {
+    out[0] = -a[0];
+    out[1] = -a[1];
+    out[2] = -a[2];
+    out[3] = a[3];
+    out[4] = -a[4];
+    out[5] = -a[5];
+    out[6] = -a[6];
+    out[7] = a[7];
+    return out;
+  }
+  /**
+   * Calculates the length of a dual quat
+   *
+   * @param {ReadonlyQuat2} a dual quat to calculate length of
+   * @returns {Number} length of a
+   * @function
+   */
+
+  var length$3 = length$2;
+  /**
+   * Alias for {@link quat2.length}
+   * @function
+   */
+
+  var len$3 = length$3;
+  /**
+   * Calculates the squared length of a dual quat
+   *
+   * @param {ReadonlyQuat2} a dual quat to calculate squared length of
+   * @returns {Number} squared length of a
+   * @function
+   */
+
+  var squaredLength$3 = squaredLength$2;
+  /**
+   * Alias for {@link quat2.squaredLength}
+   * @function
+   */
+
+  var sqrLen$3 = squaredLength$3;
+  /**
+   * Normalize a dual quat
+   *
+   * @param {quat2} out the receiving dual quaternion
+   * @param {ReadonlyQuat2} a dual quaternion to normalize
+   * @returns {quat2} out
+   * @function
+   */
+
+  function normalize$3(out, a) {
+    var magnitude = squaredLength$3(a);
+
+    if (magnitude > 0) {
+      magnitude = Math.sqrt(magnitude);
+      var a0 = a[0] / magnitude;
+      var a1 = a[1] / magnitude;
+      var a2 = a[2] / magnitude;
+      var a3 = a[3] / magnitude;
+      var b0 = a[4];
+      var b1 = a[5];
+      var b2 = a[6];
+      var b3 = a[7];
+      var a_dot_b = a0 * b0 + a1 * b1 + a2 * b2 + a3 * b3;
+      out[0] = a0;
+      out[1] = a1;
+      out[2] = a2;
+      out[3] = a3;
+      out[4] = (b0 - a0 * a_dot_b) / magnitude;
+      out[5] = (b1 - a1 * a_dot_b) / magnitude;
+      out[6] = (b2 - a2 * a_dot_b) / magnitude;
+      out[7] = (b3 - a3 * a_dot_b) / magnitude;
+    }
+
+    return out;
+  }
+  /**
+   * Returns a string representation of a dual quatenion
+   *
+   * @param {ReadonlyQuat2} a dual quaternion to represent as a string
+   * @returns {String} string representation of the dual quat
+   */
+
+  function str$7(a) {
+    return "quat2(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ", " + a[4] + ", " + a[5] + ", " + a[6] + ", " + a[7] + ")";
+  }
+  /**
+   * Returns whether or not the dual quaternions have exactly the same elements in the same position (when compared with ===)
+   *
+   * @param {ReadonlyQuat2} a the first dual quaternion.
+   * @param {ReadonlyQuat2} b the second dual quaternion.
+   * @returns {Boolean} true if the dual quaternions are equal, false otherwise.
+   */
+
+  function exactEquals$7(a, b) {
+    return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7];
+  }
+  /**
+   * Returns whether or not the dual quaternions have approximately the same elements in the same position.
+   *
+   * @param {ReadonlyQuat2} a the first dual quat.
+   * @param {ReadonlyQuat2} b the second dual quat.
+   * @returns {Boolean} true if the dual quats are equal, false otherwise.
+   */
+
+  function equals$8(a, b) {
+    var a0 = a[0],
+        a1 = a[1],
+        a2 = a[2],
+        a3 = a[3],
+        a4 = a[4],
+        a5 = a[5],
+        a6 = a[6],
+        a7 = a[7];
+    var b0 = b[0],
+        b1 = b[1],
+        b2 = b[2],
+        b3 = b[3],
+        b4 = b[4],
+        b5 = b[5],
+        b6 = b[6],
+        b7 = b[7];
+    return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7));
+  }
+
+  var quat2 = /*#__PURE__*/Object.freeze({
+    __proto__: null,
+    create: create$7,
+    clone: clone$7,
+    fromValues: fromValues$7,
+    fromRotationTranslationValues: fromRotationTranslationValues,
+    fromRotationTranslation: fromRotationTranslation$1,
+    fromTranslation: fromTranslation$3,
+    fromRotation: fromRotation$4,
+    fromMat4: fromMat4$1,
+    copy: copy$7,
+    identity: identity$5,
+    set: set$7,
+    getReal: getReal,
+    getDual: getDual,
+    setReal: setReal,
+    setDual: setDual,
+    getTranslation: getTranslation$1,
+    translate: translate$3,
+    rotateX: rotateX$3,
+    rotateY: rotateY$3,
+    rotateZ: rotateZ$3,
+    rotateByQuatAppend: rotateByQuatAppend,
+    rotateByQuatPrepend: rotateByQuatPrepend,
+    rotateAroundAxis: rotateAroundAxis,
+    add: add$7,
+    multiply: multiply$7,
+    mul: mul$7,
+    scale: scale$7,
+    dot: dot$3,
+    lerp: lerp$3,
+    invert: invert$5,
+    conjugate: conjugate$1,
+    length: length$3,
+    len: len$3,
+    squaredLength: squaredLength$3,
+    sqrLen: sqrLen$3,
+    normalize: normalize$3,
+    str: str$7,
+    exactEquals: exactEquals$7,
+    equals: equals$8
+  });
+
+  /**
+   * 2 Dimensional Vector
+   * @module vec2
+   */
+
+  /**
+   * Creates a new, empty vec2
+   *
+   * @returns {vec2} a new 2D vector
+   */
+
+  function create$8() {
+    var out = new ARRAY_TYPE(2);
+
+    if (ARRAY_TYPE != Float32Array) {
+      out[0] = 0;
+      out[1] = 0;
+    }
+
+    return out;
+  }
+  /**
+   * Creates a new vec2 initialized with values from an existing vector
+   *
+   * @param {ReadonlyVec2} a vector to clone
+   * @returns {vec2} a new 2D vector
+   */
+
+  function clone$8(a) {
+    var out = new ARRAY_TYPE(2);
+    out[0] = a[0];
+    out[1] = a[1];
+    return out;
+  }
+  /**
+   * Creates a new vec2 initialized with the given values
+   *
+   * @param {Number} x X component
+   * @param {Number} y Y component
+   * @returns {vec2} a new 2D vector
+   */
+
+  function fromValues$8(x, y) {
+    var out = new ARRAY_TYPE(2);
+    out[0] = x;
+    out[1] = y;
+    return out;
+  }
+  /**
+   * Copy the values from one vec2 to another
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the source vector
+   * @returns {vec2} out
+   */
+
+  function copy$8(out, a) {
+    out[0] = a[0];
+    out[1] = a[1];
+    return out;
+  }
+  /**
+   * Set the components of a vec2 to the given values
+   *
+   * @param {vec2} out the receiving vector
+   * @param {Number} x X component
+   * @param {Number} y Y component
+   * @returns {vec2} out
+   */
+
+  function set$8(out, x, y) {
+    out[0] = x;
+    out[1] = y;
+    return out;
+  }
+  /**
+   * Adds two vec2's
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @returns {vec2} out
+   */
+
+  function add$8(out, a, b) {
+    out[0] = a[0] + b[0];
+    out[1] = a[1] + b[1];
+    return out;
+  }
+  /**
+   * Subtracts vector b from vector a
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @returns {vec2} out
+   */
+
+  function subtract$6(out, a, b) {
+    out[0] = a[0] - b[0];
+    out[1] = a[1] - b[1];
+    return out;
+  }
+  /**
+   * Multiplies two vec2's
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @returns {vec2} out
+   */
+
+  function multiply$8(out, a, b) {
+    out[0] = a[0] * b[0];
+    out[1] = a[1] * b[1];
+    return out;
+  }
+  /**
+   * Divides two vec2's
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @returns {vec2} out
+   */
+
+  function divide$2(out, a, b) {
+    out[0] = a[0] / b[0];
+    out[1] = a[1] / b[1];
+    return out;
+  }
+  /**
+   * Math.ceil the components of a vec2
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a vector to ceil
+   * @returns {vec2} out
+   */
+
+  function ceil$2(out, a) {
+    out[0] = Math.ceil(a[0]);
+    out[1] = Math.ceil(a[1]);
+    return out;
+  }
+  /**
+   * Math.floor the components of a vec2
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a vector to floor
+   * @returns {vec2} out
+   */
+
+  function floor$2(out, a) {
+    out[0] = Math.floor(a[0]);
+    out[1] = Math.floor(a[1]);
+    return out;
+  }
+  /**
+   * Returns the minimum of two vec2's
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @returns {vec2} out
+   */
+
+  function min$2(out, a, b) {
+    out[0] = Math.min(a[0], b[0]);
+    out[1] = Math.min(a[1], b[1]);
+    return out;
+  }
+  /**
+   * Returns the maximum of two vec2's
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @returns {vec2} out
+   */
+
+  function max$2(out, a, b) {
+    out[0] = Math.max(a[0], b[0]);
+    out[1] = Math.max(a[1], b[1]);
+    return out;
+  }
+  /**
+   * Math.round the components of a vec2
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a vector to round
+   * @returns {vec2} out
+   */
+
+  function round$2(out, a) {
+    out[0] = Math.round(a[0]);
+    out[1] = Math.round(a[1]);
+    return out;
+  }
+  /**
+   * Scales a vec2 by a scalar number
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the vector to scale
+   * @param {Number} b amount to scale the vector by
+   * @returns {vec2} out
+   */
+
+  function scale$8(out, a, b) {
+    out[0] = a[0] * b;
+    out[1] = a[1] * b;
+    return out;
+  }
+  /**
+   * Adds two vec2's after scaling the second operand by a scalar value
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @param {Number} scale the amount to scale b by before adding
+   * @returns {vec2} out
+   */
+
+  function scaleAndAdd$2(out, a, b, scale) {
+    out[0] = a[0] + b[0] * scale;
+    out[1] = a[1] + b[1] * scale;
+    return out;
+  }
+  /**
+   * Calculates the euclidian distance between two vec2's
+   *
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @returns {Number} distance between a and b
+   */
+
+  function distance$2(a, b) {
+    var x = b[0] - a[0],
+        y = b[1] - a[1];
+    return Math.hypot(x, y);
+  }
+  /**
+   * Calculates the squared euclidian distance between two vec2's
+   *
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @returns {Number} squared distance between a and b
+   */
+
+  function squaredDistance$2(a, b) {
+    var x = b[0] - a[0],
+        y = b[1] - a[1];
+    return x * x + y * y;
+  }
+  /**
+   * Calculates the length of a vec2
+   *
+   * @param {ReadonlyVec2} a vector to calculate length of
+   * @returns {Number} length of a
+   */
+
+  function length$4(a) {
+    var x = a[0],
+        y = a[1];
+    return Math.hypot(x, y);
+  }
+  /**
+   * Calculates the squared length of a vec2
+   *
+   * @param {ReadonlyVec2} a vector to calculate squared length of
+   * @returns {Number} squared length of a
+   */
+
+  function squaredLength$4(a) {
+    var x = a[0],
+        y = a[1];
+    return x * x + y * y;
+  }
+  /**
+   * Negates the components of a vec2
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a vector to negate
+   * @returns {vec2} out
+   */
+
+  function negate$2(out, a) {
+    out[0] = -a[0];
+    out[1] = -a[1];
+    return out;
+  }
+  /**
+   * Returns the inverse of the components of a vec2
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a vector to invert
+   * @returns {vec2} out
+   */
+
+  function inverse$2(out, a) {
+    out[0] = 1.0 / a[0];
+    out[1] = 1.0 / a[1];
+    return out;
+  }
+  /**
+   * Normalize a vec2
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a vector to normalize
+   * @returns {vec2} out
+   */
+
+  function normalize$4(out, a) {
+    var x = a[0],
+        y = a[1];
+    var len = x * x + y * y;
+
+    if (len > 0) {
+      //TODO: evaluate use of glm_invsqrt here?
+      len = 1 / Math.sqrt(len);
+    }
+
+    out[0] = a[0] * len;
+    out[1] = a[1] * len;
+    return out;
+  }
+  /**
+   * Calculates the dot product of two vec2's
+   *
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @returns {Number} dot product of a and b
+   */
+
+  function dot$4(a, b) {
+    return a[0] * b[0] + a[1] * b[1];
+  }
+  /**
+   * Computes the cross product of two vec2's
+   * Note that the cross product must by definition produce a 3D vector
+   *
+   * @param {vec3} out the receiving vector
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @returns {vec3} out
+   */
+
+  function cross$2(out, a, b) {
+    var z = a[0] * b[1] - a[1] * b[0];
+    out[0] = out[1] = 0;
+    out[2] = z;
+    return out;
+  }
+  /**
+   * Performs a linear interpolation between two vec2's
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the first operand
+   * @param {ReadonlyVec2} b the second operand
+   * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
+   * @returns {vec2} out
+   */
+
+  function lerp$4(out, a, b, t) {
+    var ax = a[0],
+        ay = a[1];
+    out[0] = ax + t * (b[0] - ax);
+    out[1] = ay + t * (b[1] - ay);
+    return out;
+  }
+  /**
+   * Generates a random vector with the given scale
+   *
+   * @param {vec2} out the receiving vector
+   * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
+   * @returns {vec2} out
+   */
+
+  function random$3(out, scale) {
+    scale = scale || 1.0;
+    var r = RANDOM() * 2.0 * Math.PI;
+    out[0] = Math.cos(r) * scale;
+    out[1] = Math.sin(r) * scale;
+    return out;
+  }
+  /**
+   * Transforms the vec2 with a mat2
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the vector to transform
+   * @param {ReadonlyMat2} m matrix to transform with
+   * @returns {vec2} out
+   */
+
+  function transformMat2(out, a, m) {
+    var x = a[0],
+        y = a[1];
+    out[0] = m[0] * x + m[2] * y;
+    out[1] = m[1] * x + m[3] * y;
+    return out;
+  }
+  /**
+   * Transforms the vec2 with a mat2d
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the vector to transform
+   * @param {ReadonlyMat2d} m matrix to transform with
+   * @returns {vec2} out
+   */
+
+  function transformMat2d(out, a, m) {
+    var x = a[0],
+        y = a[1];
+    out[0] = m[0] * x + m[2] * y + m[4];
+    out[1] = m[1] * x + m[3] * y + m[5];
+    return out;
+  }
+  /**
+   * Transforms the vec2 with a mat3
+   * 3rd vector component is implicitly '1'
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the vector to transform
+   * @param {ReadonlyMat3} m matrix to transform with
+   * @returns {vec2} out
+   */
+
+  function transformMat3$1(out, a, m) {
+    var x = a[0],
+        y = a[1];
+    out[0] = m[0] * x + m[3] * y + m[6];
+    out[1] = m[1] * x + m[4] * y + m[7];
+    return out;
+  }
+  /**
+   * Transforms the vec2 with a mat4
+   * 3rd vector component is implicitly '0'
+   * 4th vector component is implicitly '1'
+   *
+   * @param {vec2} out the receiving vector
+   * @param {ReadonlyVec2} a the vector to transform
+   * @param {ReadonlyMat4} m matrix to transform with
+   * @returns {vec2} out
+   */
+
+  function transformMat4$2(out, a, m) {
+    var x = a[0];
+    var y = a[1];
+    out[0] = m[0] * x + m[4] * y + m[12];
+    out[1] = m[1] * x + m[5] * y + m[13];
+    return out;
+  }
+  /**
+   * Rotate a 2D vector
+   * @param {vec2} out The receiving vec2
+   * @param {ReadonlyVec2} a The vec2 point to rotate
+   * @param {ReadonlyVec2} b The origin of the rotation
+   * @param {Number} rad The angle of rotation in radians
+   * @returns {vec2} out
+   */
+
+  function rotate$4(out, a, b, rad) {
+    //Translate point to the origin
+    var p0 = a[0] - b[0],
+        p1 = a[1] - b[1],
+        sinC = Math.sin(rad),
+        cosC = Math.cos(rad); //perform rotation and translate to correct position
+
+    out[0] = p0 * cosC - p1 * sinC + b[0];
+    out[1] = p0 * sinC + p1 * cosC + b[1];
+    return out;
+  }
+  /**
+   * Get the angle between two 2D vectors
+   * @param {ReadonlyVec2} a The first operand
+   * @param {ReadonlyVec2} b The second operand
+   * @returns {Number} The angle in radians
+   */
+
+  function angle$1(a, b) {
+    var x1 = a[0],
+        y1 = a[1],
+        x2 = b[0],
+        y2 = b[1],
+        // mag is the product of the magnitudes of a and b
+    mag = Math.sqrt(x1 * x1 + y1 * y1) * Math.sqrt(x2 * x2 + y2 * y2),
+        // mag &&.. short circuits if mag == 0
+    cosine = mag && (x1 * x2 + y1 * y2) / mag; // Math.min(Math.max(cosine, -1), 1) clamps the cosine between -1 and 1
+
+    return Math.acos(Math.min(Math.max(cosine, -1), 1));
+  }
+  /**
+   * Set the components of a vec2 to zero
+   *
+   * @param {vec2} out the receiving vector
+   * @returns {vec2} out
+   */
+
+  function zero$2(out) {
+    out[0] = 0.0;
+    out[1] = 0.0;
+    return out;
+  }
+  /**
+   * Returns a string representation of a vector
+   *
+   * @param {ReadonlyVec2} a vector to represent as a string
+   * @returns {String} string representation of the vector
+   */
+
+  function str$8(a) {
+    return "vec2(" + a[0] + ", " + a[1] + ")";
+  }
+  /**
+   * Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===)
+   *
+   * @param {ReadonlyVec2} a The first vector.
+   * @param {ReadonlyVec2} b The second vector.
+   * @returns {Boolean} True if the vectors are equal, false otherwise.
+   */
+
+  function exactEquals$8(a, b) {
+    return a[0] === b[0] && a[1] === b[1];
+  }
+  /**
+   * Returns whether or not the vectors have approximately the same elements in the same position.
+   *
+   * @param {ReadonlyVec2} a The first vector.
+   * @param {ReadonlyVec2} b The second vector.
+   * @returns {Boolean} True if the vectors are equal, false otherwise.
+   */
+
+  function equals$9(a, b) {
+    var a0 = a[0],
+        a1 = a[1];
+    var b0 = b[0],
+        b1 = b[1];
+    return Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1));
+  }
+  /**
+   * Alias for {@link vec2.length}
+   * @function
+   */
+
+  var len$4 = length$4;
+  /**
+   * Alias for {@link vec2.subtract}
+   * @function
+   */
+
+  var sub$6 = subtract$6;
+  /**
+   * Alias for {@link vec2.multiply}
+   * @function
+   */
+
+  var mul$8 = multiply$8;
+  /**
+   * Alias for {@link vec2.divide}
+   * @function
+   */
+
+  var div$2 = divide$2;
+  /**
+   * Alias for {@link vec2.distance}
+   * @function
+   */
+
+  var dist$2 = distance$2;
+  /**
+   * Alias for {@link vec2.squaredDistance}
+   * @function
+   */
+
+  var sqrDist$2 = squaredDistance$2;
+  /**
+   * Alias for {@link vec2.squaredLength}
+   * @function
+   */
+
+  var sqrLen$4 = squaredLength$4;
+  /**
+   * Perform some operation over an array of vec2s.
+   *
+   * @param {Array} a the array of vectors to iterate over
+   * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed
+   * @param {Number} offset Number of elements to skip at the beginning of the array
+   * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
+   * @param {Function} fn Function to call for each vector in the array
+   * @param {Object} [arg] additional argument to pass to fn
+   * @returns {Array} a
+   * @function
+   */
+
+  var forEach$2 = function () {
+    var vec = create$8();
+    return function (a, stride, offset, count, fn, arg) {
+      var i, l;
+
+      if (!stride) {
+        stride = 2;
+      }
+
+      if (!offset) {
+        offset = 0;
+      }
+
+      if (count) {
+        l = Math.min(count * stride + offset, a.length);
+      } else {
+        l = a.length;
+      }
+
+      for (i = offset; i < l; i += stride) {
+        vec[0] = a[i];
+        vec[1] = a[i + 1];
+        fn(vec, vec, arg);
+        a[i] = vec[0];
+        a[i + 1] = vec[1];
+      }
+
+      return a;
+    };
+  }();
+
+  var vec2 = /*#__PURE__*/Object.freeze({
+    __proto__: null,
+    create: create$8,
+    clone: clone$8,
+    fromValues: fromValues$8,
+    copy: copy$8,
+    set: set$8,
+    add: add$8,
+    subtract: subtract$6,
+    multiply: multiply$8,
+    divide: divide$2,
+    ceil: ceil$2,
+    floor: floor$2,
+    min: min$2,
+    max: max$2,
+    round: round$2,
+    scale: scale$8,
+    scaleAndAdd: scaleAndAdd$2,
+    distance: distance$2,
+    squaredDistance: squaredDistance$2,
+    length: length$4,
+    squaredLength: squaredLength$4,
+    negate: negate$2,
+    inverse: inverse$2,
+    normalize: normalize$4,
+    dot: dot$4,
+    cross: cross$2,
+    lerp: lerp$4,
+    random: random$3,
+    transformMat2: transformMat2,
+    transformMat2d: transformMat2d,
+    transformMat3: transformMat3$1,
+    transformMat4: transformMat4$2,
+    rotate: rotate$4,
+    angle: angle$1,
+    zero: zero$2,
+    str: str$8,
+    exactEquals: exactEquals$8,
+    equals: equals$9,
+    len: len$4,
+    sub: sub$6,
+    mul: mul$8,
+    div: div$2,
+    dist: dist$2,
+    sqrDist: sqrDist$2,
+    sqrLen: sqrLen$4,
+    forEach: forEach$2
+  });
+
+  exports.glMatrix = common;
+  exports.mat2 = mat2;
+  exports.mat2d = mat2d;
+  exports.mat3 = mat3;
+  exports.mat4 = mat4;
+  exports.quat = quat;
+  exports.quat2 = quat2;
+  exports.vec2 = vec2;
+  exports.vec3 = vec3;
+  exports.vec4 = vec4;
+
+  Object.defineProperty(exports, '__esModule', { value: true });
+
+})));
diff --git a/index.html b/index.html
new file mode 100644
index 0000000000000000000000000000000000000000..1f27f96860b589ae0f0304f870516b3bdf08d408
--- /dev/null
+++ b/index.html
@@ -0,0 +1,111 @@
+<html>
+
+<head>
+<title>WebGL1.0 Tutorial</title>
+<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
+<script type="text/javascript" src="gl-matrix.js"> </script>
+<script type="text/javascript" src="script.js"> </script>
+
+</head>
+
+<body onload="main()">
+	<table>
+	<td>
+		<canvas id="helloapicanvas" style="border: none;" width="800" height="600"></canvas>
+	<td>
+	<input type="checkbox" onclick="flag_animation ^= 1;" id="toggleAnimation"><lable>Toggle Animation | </lebel>
+	<lable>Speed Up/Down :</label> 
+    <button onclick="fn_speed_scale(1.1)"> + </button>
+    <button onclick="fn_speed_scale(0.9)"> - </button>
+    <lable> | Animation Rotate :</lable>
+    <input type="checkbox" onclick="animate_rotate(1)"><lable>X-axis Rotate  /</lable>
+    <input type="checkbox" onclick="animate_rotate(2)"><lable>Y-axis Rotate  /</lable>
+    <input type="checkbox" onclick="animate_rotate(3)"><lable>Z-axis Rotate  </lable>
+	<br/><hr>
+	<lable>Draw Mode :</label>
+	<input name="drawmode" type="radio" onclick="fn_draw_mode(0)"><lable>POINTS </label>
+	<input name="drawmode" type="radio" onclick="fn_draw_mode(1)"><lable>LINES </label>
+	<input name="drawmode" type="radio" onclick="fn_draw_mode(2)"><lable>LINE_STRIP </label>
+	<input name="drawmode" type="radio" onclick="fn_draw_mode(3)"><lable>LINE_LOOP  </label>
+	<input name="drawmode" type="radio" onclick="fn_draw_mode(4)" checked><lable>TRIANGLES </label>
+	<input name="drawmode" type="radio" onclick="fn_draw_mode(5)"><lable>TRIANGLE_STRIP </label>
+	<input name="drawmode" type="radio" onclick="fn_draw_mode(6)"><lable>TRIANGLE_FAN </label>
+    <br/><hr>
+    <label>FOV : </label>
+    <input style="width:400px" id="fov_range" type="range" min="10" max="170" value="90" oninput="fn_update_fov(this.value);"></input>
+	<input style="width:60px" type="text" id="textFOV" value="90">
+	<br/><hr>
+	<input type="checkbox" onclick="fn_toggle(2884)"><lable>CULL_FACE  | </lable>
+	<label>cullFace(mode) :</label>
+	<input name="cullmode" type="radio" onclick="fn_cull_mode(1028)"><lable>FRONT <label>
+	<input name="cullmode" type="radio" onclick="fn_cull_mode(1029)" checked><label>BACK <label>
+	<input name="cullmode" type="radio" onclick="fn_cull_mode(1032)"><label>FRONT_AND_BACK <label>
+	<br/><hr>
+	<input type="checkbox" onclick="fn_toggle(3089)"><lable>SCISSOR_TEST  | </lable>
+	<label>scissor(x,y,w,h) :</label>
+	<lable> X <label><input id="scissorx" type="text" size="4" value="0">
+	<label> Y <label><input id="scissory" type="text" size="4" value="0">
+	<label> W <label><input id="scissorw" type="text" size="4" value="800">
+	<label> H <label><input id="scissorh" type="text" size="4" value="600">
+	<button onclick="fn_scissor()">Set</button>
+	<br/><hr>
+	<input type="checkbox" onclick="fn_toggle(2929)"><lable>DEPTH_TEST  | depth clear value : </lable> 
+	<input style="width:300px" id="depth_clear" type="range" min="0" max="100" value="100" 
+	     oninput="depth_clear_value = this.value / 100.0;"></input>
+	<br/>
+	<label>depthFunc(mode) :</label>
+	<input name="depthmode" type="radio" onclick="fn_depth_mode(512)"><lable>NEVER </label>
+	<input name="depthmode" type="radio" onclick="fn_depth_mode(513)" checked><lable>LESS </label>
+	<input name="depthmode" type="radio" onclick="fn_depth_mode(514)"><lable>EQAUL </label>
+	<input name="depthmode" type="radio" onclick="fn_depth_mode(515)"><lable>LEQUAL  </label>
+	<input name="depthmode" type="radio" onclick="fn_depth_mode(516)"><lable>GREATER </label>
+	<input name="depthmode" type="radio" onclick="fn_depth_mode(517)"><lable>NOTEQUAL </label>
+	<input name="depthmode" type="radio" onclick="fn_depth_mode(518)"><lable>GEQUAL </label>
+	<input name="depthmode" type="radio" onclick="fn_depth_mode(519)"><lable>ALWAYS </label> <br/>
+    <hr>
+    <label>X rotate : </label>
+    <input style="width:400px" id="x_rotate" type="range" min="0" max="360" value="0" oninput="fn_update_xrotate(this.value);"></input>
+	<input style="width:60px" type="text" id="textXRot" value="0">
+    <br/>
+    <label>Y rotate : </label>
+    <input style="width:400px" id="y_rotate" type="range" min="0" max="360" value="0" oninput="fn_update_yrotate(this.value);"></input>
+	<input style="width:60px" type="text" id="textYRot" value="0">
+    <br/>
+    <label>Z rotate : </label>
+    <input style="width:400px" id="z_rotate" type="range" min="0" max="360" value="0" oninput="fn_update_zrotate(this.value);"></input>
+	<input style="width:60px" type="text" id="textZRot" value="0">
+    <br/><hr>
+    <label>Cube Move | </label>
+    <br/>
+    <label>X-axis Move : </label>
+    <input style="width:400px" id="x_move" type="range" min="-100" max="100" value="0" oninput="fn_update_xmove(this.value);"></input>
+	<input style="width:60px" type="text" id="textXMove" value="0">
+    <br/>
+    <label>Y-axis Move : </label>
+    <input style="width:400px" id="y_move" type="range" min="-100" max="100" value="0" oninput="fn_update_ymove(this.value);"></input>
+	<input style="width:60px" type="text" id="textYMove" value="0">
+    <br/>
+    <label>Z-axis Move : </label>
+    <input style="width:400px" id="z_move" type="range" min="-100" max="100" value="0" oninput="fn_update_zmove(this.value);"></input>
+	<input style="width:60px" type="text" id="textZMove" value="0">
+    <br/><hr>
+	<label>lookAt | </label>
+    <br/>
+    <label>eye vector : </label>
+    <input style="width:400px" id="x_move" type="range" min="-100" max="100" value="0" oninput="fn_update_xmove(this.value);"></input>
+	<input style="width:60px" type="text" id="textXMove" value="0">
+    <br/>
+    <label>Y-axis  : </label>
+    <input style="width:400px" id="y_move" type="range" min="-100" max="100" value="0" oninput="fn_update_ymove(this.value);"></input>
+	<input style="width:60px" type="text" id="textYMove" value="0">
+    <br/>
+    <label>Z-axis Move : </label>
+    <input style="width:400px" id="z_move" type="range" min="-100" max="100" value="0" oninput="fn_update_zmove(this.value);"></input>
+	<input style="width:60px" type="text" id="textZMove" value="0">
+    <br/><hr>
+	</table>
+	<br/><br/>
+    
+</body>
+
+</html>
diff --git a/script.js b/script.js
new file mode 100644
index 0000000000000000000000000000000000000000..7b95e6fd59538536139d7be1356a3f4d0fc55e03
--- /dev/null
+++ b/script.js
@@ -0,0 +1,402 @@
+var gl;
+const {mat2, mat3, mat4, vec2, vec3, vec4} = glMatrix;  // Now we can use function without glMatrix.~~~
+
+function testGLError(functionLastCalled) {
+    /* gl.getError returns the last error that occurred using WebGL for debugging */ 
+    var lastError = gl.getError();
+
+    if (lastError != gl.NO_ERROR) {
+        alert(functionLastCalled + " failed (" + lastError + ")");
+        return false;
+    }
+    return true;
+}
+
+function initialiseGL(canvas) {
+    try {
+        // Try to grab the standard context. If it fails, fallback to experimental
+        gl = canvas.getContext('webgl',
+			{stencil:true, alpha:true, depth:true, antialias:true, preserveDrawingBuffer:false});
+		//gl = canvas.getContext('webgl',
+		//	{stencil:true, alpha:true, depth:true, antialias:false, preserveDrawingBuffer:true});
+        gl.viewport(0, 0, canvas.width, canvas.height);
+    }
+    catch (e) {
+    }
+
+    if (!gl) {
+        alert("Unable to initialise WebGL. Your browser may not support it");
+        return false;
+    }
+    return true;
+}
+
+var shaderProgram;
+
+var vertexData = [
+		// Backface (RED) 
+        -0.5, -0.5, -0.5,  0.870, 0.174, 0.360, 1.0,
+         0.5,  0.5, -0.5,  0.870, 0.174, 0.360, 1.0,
+         0.5, -0.5, -0.5,  0.870, 0.174, 0.360, 1.0,
+        -0.5, -0.5, -0.5,  0.870, 0.174, 0.360, 1.0,
+        -0.5,  0.5, -0.5,  0.870, 0.174, 0.360, 1.0,
+         0.5,  0.5, -0.5,  0.870, 0.174, 0.360, 1.0,
+		// Front (BLUE)
+        -0.5, -0.5,  0.5,  0.289, 0.477, 0.780, 1.0,
+         0.5, -0.5,  0.5,  0.289, 0.477, 0.780, 1.0,
+		     0.5,  0.5,  0.5,  0.289, 0.477, 0.780, 1.0,
+        -0.5, -0.5,  0.5,  0.289, 0.477, 0.780, 1.0,
+         0.5,  0.5,  0.5,  0.289, 0.477, 0.780, 1.0,
+		    -0.5,  0.5,  0.5,  0.289, 0.477, 0.780, 1.0,
+		// LEFT (GREEN)
+        -0.5, -0.5, -0.5,  0.289, 0.780, 0.583, 1.0,
+        -0.5,  0.5,  0.5,  0.289, 0.780, 0.583, 1.0,
+        -0.5,  0.5, -0.5,  0.289, 0.780, 0.583, 1.0,
+        -0.5, -0.5, -0.5,  0.289, 0.780, 0.583, 1.0,
+        -0.5, -0.5,  0.5,  0.289, 0.780, 0.583, 1.0,
+        -0.5,  0.5,  0.5,  0.289, 0.780, 0.583, 1.0, 
+		// RIGHT (YELLOW)
+         0.5, -0.5, -0.5,  0.920, 0.915, 0.598, 1.0,
+         0.5,  0.5, -0.5,  0.920, 0.915, 0.598, 1.0,
+		     0.5,  0.5,  0.5,  0.920, 0.915, 0.598, 1.0,
+         0.5, -0.5, -0.5,  0.920, 0.915, 0.598, 1.0,
+         0.5,  0.5,  0.5,  0.920, 0.915, 0.598, 1.0,
+		     0.5, -0.5,  0.5,  0.920, 0.915, 0.598, 1.0,
+		// BOTTON (MAGENTA)
+        -0.5, -0.5, -0.5,  0.756, 0.485, 0.950, 1.0,
+         0.5, -0.5, -0.5,  0.756, 0.485, 0.950, 1.0,
+		     0.5, -0.5,  0.5,  0.756, 0.485, 0.950, 1.0,
+        -0.5, -0.5, -0.5,  0.756, 0.485, 0.950, 1.0,
+         0.5, -0.5,  0.5,  0.756, 0.485, 0.950, 1.0,
+		    -0.5, -0.5,  0.5,  0.756, 0.485, 0.950, 1.0,
+		// TOP (CYAN)
+        -0.5,  0.5, -0.5,  0.598, 0.786, 0.920, 1.0,
+         0.5,  0.5,  0.5,  0.598, 0.786, 0.920, 1.0,
+         0.5,  0.5, -0.5,  0.598, 0.786, 0.920, 1.0,
+        -0.5,  0.5, -0.5,  0.598, 0.786, 0.920, 1.0,
+        -0.5,  0.5,  0.5,  0.598, 0.786, 0.920, 1.0,
+         0.5,  0.5,  0.5,  0.598, 0.786, 0.920, 1.0,
+    // X axis
+         0.0, 0.0, 0.0,  1.0, 0.0,  0.0, 1.0,
+         1.0, 0.0, 0.0,  1.0, 0.0,  0.0, 1.0,
+    // Y axis
+         0.0, 0.0, 0.0,  0.0, 1.0,  0.0, 1.0,
+         0.0, 1.0, 0.0,  0.0, 1.0,  0.0, 1.0,
+    // Z axis
+         0.0, 0.0, 0.0, 0.0,  0.0,  1.0, 1.0,
+         0.0, 0.0, 1.0, 0.0,  0.0,  1.0, 1.0,
+];
+
+function initialiseBuffer() {
+
+    gl.vertexBuffer = gl.createBuffer();
+    gl.bindBuffer(gl.ARRAY_BUFFER, gl.vertexBuffer);
+    gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexData), gl.STATIC_DRAW);
+
+    return testGLError("initialiseBuffers");
+}
+
+function initialiseShaders() {
+
+    var fragmentShaderSource = `
+			varying highp vec4 col; 
+			void main(void) 
+			{ 
+				gl_FragColor = col;
+			}`;
+
+    gl.fragShader = gl.createShader(gl.FRAGMENT_SHADER);
+    gl.shaderSource(gl.fragShader, fragmentShaderSource);
+    gl.compileShader(gl.fragShader);
+    // Check if compilation succeeded
+    if (!gl.getShaderParameter(gl.fragShader, gl.COMPILE_STATUS)) {
+        alert("Failed to compile the fragment shader.\n" + gl.getShaderInfoLog(gl.fragShader));
+        return false;
+    }
+
+    // Vertex shader code
+    var vertexShaderSource = `
+			attribute highp vec4 myVertex; 
+			attribute highp vec4 myColor; 
+			uniform mediump mat4 mMat; 
+			uniform mediump mat4 vMat; 
+			uniform mediump mat4 pMat; 
+			varying  highp vec4 col;
+			void main(void)  
+			{ 
+				gl_Position = pMat * vMat * mMat * myVertex; 
+				gl_PointSize = 8.0;
+				col = myColor; 
+			}`;
+
+    gl.vertexShader = gl.createShader(gl.VERTEX_SHADER);
+    gl.shaderSource(gl.vertexShader, vertexShaderSource);
+    gl.compileShader(gl.vertexShader);
+    // Check if compilation succeeded
+    if (!gl.getShaderParameter(gl.vertexShader, gl.COMPILE_STATUS)) {
+        alert("Failed to compile the vertex shader.\n" + gl.getShaderInfoLog(gl.vertexShader));
+        return false;
+    }
+
+    // Create the shader program
+    gl.programObject = gl.createProgram();
+    // Attach the fragment and vertex shaders to it
+    gl.attachShader(gl.programObject, gl.fragShader);
+    gl.attachShader(gl.programObject, gl.vertexShader);
+    // Bind the custom vertex attribute "myVertex" to location 0
+    gl.bindAttribLocation(gl.programObject, 0, "myVertex");
+    gl.bindAttribLocation(gl.programObject, 1, "myColor");
+    // Link the program
+    gl.linkProgram(gl.programObject);
+    // Check if linking succeeded in a similar way we checked for compilation errors
+    if (!gl.getProgramParameter(gl.programObject, gl.LINK_STATUS)) {
+        alert("Failed to link the program.\n" + gl.getProgramInfoLog(gl.programObject));
+        return false;
+    }
+
+    gl.useProgram(gl.programObject);
+
+    return testGLError("initialiseShaders");
+}
+
+var xRot = 0.0;
+var yRot = 0.0;
+var zRot = 0.0;
+var speedRot = 0.01; 
+
+var flag_animation = 0; 
+var flag_draw_twice = 0; 
+
+/* modify */
+var xRot_animate = false;
+var yRot_animate = false;
+var zRot_animate = false;
+
+var xMove = 0.0;
+var yMove = 0.0;
+var zMove = 0.0;
+
+var rotate_axis = 0.0;
+/* modify end */
+
+function fn_speed_scale(a)
+{
+	speedRot *= a; 
+}
+
+var draw_mode = 4; // 4 Triangles, 3 line_strip 0-Points
+
+function fn_draw_mode(a)
+{
+	draw_mode = a;
+}
+
+var fov_degree = 90.0; 
+function fn_update_fov(val)
+{
+	document.getElementById('textFOV').value=val; 
+	fov_degree = val; 
+}
+
+/* modify start */
+
+function fn_update_xrotate(val)
+{
+  if (!xRot_animate) {
+    document.getElementById('textXRot').value=val; 
+    xRot = val * 3.141592 / 360.0; 
+  }
+  else{
+    document.getElementById('textXRot').value = "X";
+  }
+}
+
+function fn_update_yrotate(val)
+{
+  if (!yRot_animate) {
+    document.getElementById('textYRot').value=val; 
+    yRot = val * 3.141592 / 360.0; 
+  }
+  else{
+    document.getElementById('textYRot').value = "X";
+  }
+}
+
+function fn_update_zrotate(val)
+{
+  if (!zRot_animate) {
+    document.getElementById('textZRot').value=val; 
+    zRot = val * 3.141592 / 360.0; 
+  }
+  else{
+    document.getElementById('textZRot').value = "X";
+  }
+}
+
+function animate_rotate(val)
+{
+  if (val == 1) {
+    xRot_animate = !xRot_animate
+  }
+  else if (val == 2) {
+    yRot_animate = !yRot_animate
+  }
+  else if (val == 3) {
+    zRot_animate = !zRot_animate
+  }
+}
+
+function fn_update_xmove(val)
+{
+  val = val / 100.0;
+  document.getElementById('textXMove').value = val; 
+  xMove = val; 
+}
+
+function fn_update_ymove(val)
+{
+  val = val / 100.0;
+  document.getElementById('textYMove').value = val; 
+  yMove = val; 
+}
+
+function fn_update_zmove(val)
+{
+  val = val / 100.0;
+  document.getElementById('textZMove').value = val; 
+  zMove = val; 
+}
+
+/* modify end */
+
+function fn_toggle(mode)
+{
+	if (gl.isEnabled(mode))
+		gl.disable(mode);
+	else
+		gl.enable(mode); 
+}
+
+function fn_cull_mode(val)
+{
+	gl.cullFace(val);
+}
+
+function fn_scissor()
+{
+	gl.scissor(document.getElementById('scissorx').value, document.getElementById('scissory').value,
+	document.getElementById('scissorw').value,document.getElementById('scissorh').value);
+}
+
+function fn_depth_mode(val)
+{
+	gl.depthFunc(val);
+}
+
+var mMat, vMat, pMat, tempMat; 
+var xMat, yMat, zMat; // Modify
+var identityMat;
+var depth_clear_value = 1.0; 
+
+function renderScene() {
+	
+	// fn_make_clear_stencil();
+	
+  gl.clearColor(0.0, 0.0, 0.0, 1.0);
+	gl.clearDepth(depth_clear_value);											// Added for depth Test 
+	gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);	// Added for depth Test 
+	
+  var mMatLocation = gl.getUniformLocation(gl.programObject, "mMat");
+	var vMatLocation = gl.getUniformLocation(gl.programObject, "vMat");
+	var pMatLocation = gl.getUniformLocation(gl.programObject, "pMat");
+
+  pMat = mat4.create(); 
+	vMat = mat4.create(); 
+	mMat = mat4.create(); 
+  
+	// mat4.ortho(pMat, -1, 1, -1, 1, -1, 1); 
+	// mat4.frustum(pMat, -8.0/6.0, 8.0/6.0, -1, 1, 1, ); 
+  mat4.translate(mMat, mMat, [xMove, yMove, zMove]);
+  mat4.rotateX(mMat, mMat, xRot);
+  mat4.rotateY(mMat, mMat, yRot);
+  mat4.rotateZ(mMat, mMat, zRot);
+  
+	mat4.perspective(pMat, fov_degree * 3.141592 / 180.0 , 8.0/6.0 , 0.5, 6); 
+	mat4.lookAt(vMat, [0,0,2], [0.0 ,0.0, 0.0], [0,1,0]);
+  // mat4.frustum(vMat, -8.0/6.0, 8.0/6.0, 1, 1, 1, ); 
+  
+	if (flag_animation == 1)
+	{
+    if (xRot_animate) 
+    {
+      xRot = xRot + speedRot;
+      document.getElementById('textXRot').value = "X";
+    }
+    if (yRot_animate)
+    {
+      yRot = yRot + speedRot;
+      document.getElementById('textYRot').value = "X";
+    }
+    if (zRot_animate)
+    {
+      zRot = zRot + speedRot;
+      document.getElementById('textZRot').value = "X";
+    }
+  }
+	
+	gl.uniformMatrix4fv(mMatLocation, gl.FALSE, mMat );
+	gl.uniformMatrix4fv(vMatLocation, gl.FALSE, vMat );
+	gl.uniformMatrix4fv(pMatLocation, gl.FALSE, pMat );
+
+    if (!testGLError("gl.uniformMatrix4fv")) {
+        return false;
+    }
+
+    gl.bindBuffer(gl.ARRAY_BUFFER, gl.vertexBuffer);
+    gl.enableVertexAttribArray(0);
+    gl.vertexAttribPointer(0, 3, gl.FLOAT, gl.FALSE, 28, 0);
+    gl.enableVertexAttribArray(1);
+    gl.vertexAttribPointer(1, 4, gl.FLOAT, gl.FALSE, 28, 12);
+
+    if (!testGLError("gl.vertexAttribPointer")) {
+        return false;
+    }
+	
+	  gl.drawArrays(draw_mode, 0, 36); 
+    gl.drawArrays(1, 36, 43);
+	
+    if (!testGLError("gl.drawArrays")) {
+        return false;
+    }
+    return true;
+}
+
+function main() {
+    var canvas = document.getElementById("helloapicanvas");
+
+    if (!initialiseGL(canvas)) {
+        return;
+    }
+
+    if (!initialiseBuffer()) {
+        return;
+    }
+
+    if (!initialiseShaders()) {
+        return;
+    }
+	
+    requestAnimFrame = (function () {
+        return window.requestAnimationFrame || window.webkitRequestAnimationFrame || window.mozRequestAnimationFrame ||
+			function (callback) {
+			    window.setTimeout(callback, 1000, 60);
+			};
+    })();
+
+    (function renderLoop() {
+        if (renderScene()) {
+            // Everything was successful, request that we redraw our scene again in the future
+            requestAnimFrame(renderLoop);
+        }
+    })();
+}
diff --git a/temp.js b/temp.js
new file mode 100644
index 0000000000000000000000000000000000000000..e3450dc8ee53a5085bdcd69ece2e677666fb246a
--- /dev/null
+++ b/temp.js
@@ -0,0 +1,1373 @@
+/*
+ * Copyright 2021 GFXFundamentals.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following disclaimer
+ * in the documentation and/or other materials provided with the
+ * distribution.
+ *     * Neither the name of GFXFundamentals. nor the names of his
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+(function(root, factory) {  // eslint-disable-line
+    if (typeof define === 'function' && define.amd) {
+      // AMD. Register as an anonymous module.
+      define([], function() {
+        return factory.call(root);
+      });
+    } else {
+      // Browser globals
+      root.webglUtils = factory.call(root);
+    }
+  }(this, function() {
+    'use strict';
+  
+    const topWindow = this;
+  
+    /** @module webgl-utils */
+  
+    function isInIFrame(w) {
+      w = w || topWindow;
+      return w !== w.top;
+    }
+  
+    if (!isInIFrame()) {
+      console.log("%c%s", 'color:blue;font-weight:bold;', 'for more about webgl-utils.js see:');  // eslint-disable-line
+      console.log("%c%s", 'color:blue;font-weight:bold;', 'https://webglfundamentals.org/webgl/lessons/webgl-boilerplate.html');  // eslint-disable-line
+    }
+  
+    /**
+     * Wrapped logging function.
+     * @param {string} msg The message to log.
+     */
+    function error(msg) {
+      if (topWindow.console) {
+        if (topWindow.console.error) {
+          topWindow.console.error(msg);
+        } else if (topWindow.console.log) {
+          topWindow.console.log(msg);
+        }
+      }
+    }
+  
+  
+    /**
+     * Error Callback
+     * @callback ErrorCallback
+     * @param {string} msg error message.
+     * @memberOf module:webgl-utils
+     */
+  
+  
+    /**
+     * Loads a shader.
+     * @param {WebGLRenderingContext} gl The WebGLRenderingContext to use.
+     * @param {string} shaderSource The shader source.
+     * @param {number} shaderType The type of shader.
+     * @param {module:webgl-utils.ErrorCallback} opt_errorCallback callback for errors.
+     * @return {WebGLShader} The created shader.
+     */
+    function loadShader(gl, shaderSource, shaderType, opt_errorCallback) {
+      const errFn = opt_errorCallback || error;
+      // Create the shader object
+      const shader = gl.createShader(shaderType);
+  
+      // Load the shader source
+      gl.shaderSource(shader, shaderSource);
+  
+      // Compile the shader
+      gl.compileShader(shader);
+  
+      // Check the compile status
+      const compiled = gl.getShaderParameter(shader, gl.COMPILE_STATUS);
+      if (!compiled) {
+        // Something went wrong during compilation; get the error
+        const lastError = gl.getShaderInfoLog(shader);
+        errFn('*** Error compiling shader \'' + shader + '\':' + lastError + `\n` + shaderSource.split('\n').map((l,i) => `${i + 1}: ${l}`).join('\n'));
+        gl.deleteShader(shader);
+        return null;
+      }
+  
+      return shader;
+    }
+  
+    /**
+     * Creates a program, attaches shaders, binds attrib locations, links the
+     * program and calls useProgram.
+     * @param {WebGLShader[]} shaders The shaders to attach
+     * @param {string[]} [opt_attribs] An array of attribs names. Locations will be assigned by index if not passed in
+     * @param {number[]} [opt_locations] The locations for the. A parallel array to opt_attribs letting you assign locations.
+     * @param {module:webgl-utils.ErrorCallback} opt_errorCallback callback for errors. By default it just prints an error to the console
+     *        on error. If you want something else pass an callback. It's passed an error message.
+     * @memberOf module:webgl-utils
+     */
+    function createProgram(
+        gl, shaders, opt_attribs, opt_locations, opt_errorCallback) {
+      const errFn = opt_errorCallback || error;
+      const program = gl.createProgram();
+      shaders.forEach(function(shader) {
+        gl.attachShader(program, shader);
+      });
+      if (opt_attribs) {
+        opt_attribs.forEach(function(attrib, ndx) {
+          gl.bindAttribLocation(
+              program,
+              opt_locations ? opt_locations[ndx] : ndx,
+              attrib);
+        });
+      }
+      gl.linkProgram(program);
+  
+      // Check the link status
+      const linked = gl.getProgramParameter(program, gl.LINK_STATUS);
+      if (!linked) {
+          // something went wrong with the link
+          const lastError = gl.getProgramInfoLog(program);
+          errFn('Error in program linking:' + lastError);
+  
+          gl.deleteProgram(program);
+          return null;
+      }
+      return program;
+    }
+  
+    /**
+     * Loads a shader from a script tag.
+     * @param {WebGLRenderingContext} gl The WebGLRenderingContext to use.
+     * @param {string} scriptId The id of the script tag.
+     * @param {number} opt_shaderType The type of shader. If not passed in it will
+     *     be derived from the type of the script tag.
+     * @param {module:webgl-utils.ErrorCallback} opt_errorCallback callback for errors.
+     * @return {WebGLShader} The created shader.
+     */
+    function createShaderFromScript(
+        gl, scriptId, opt_shaderType, opt_errorCallback) {
+      let shaderSource = '';
+      let shaderType;
+      const shaderScript = document.getElementById(scriptId);
+      if (!shaderScript) {
+        throw ('*** Error: unknown script element' + scriptId);
+      }
+      shaderSource = shaderScript.text;
+  
+      if (!opt_shaderType) {
+        if (shaderScript.type === 'x-shader/x-vertex') {
+          shaderType = gl.VERTEX_SHADER;
+        } else if (shaderScript.type === 'x-shader/x-fragment') {
+          shaderType = gl.FRAGMENT_SHADER;
+        } else if (shaderType !== gl.VERTEX_SHADER && shaderType !== gl.FRAGMENT_SHADER) {
+          throw ('*** Error: unknown shader type');
+        }
+      }
+  
+      return loadShader(
+          gl, shaderSource, opt_shaderType ? opt_shaderType : shaderType,
+          opt_errorCallback);
+    }
+  
+    const defaultShaderType = [
+      'VERTEX_SHADER',
+      'FRAGMENT_SHADER',
+    ];
+  
+    /**
+     * Creates a program from 2 script tags.
+     *
+     * @param {WebGLRenderingContext} gl The WebGLRenderingContext
+     *        to use.
+     * @param {string[]} shaderScriptIds Array of ids of the script
+     *        tags for the shaders. The first is assumed to be the
+     *        vertex shader, the second the fragment shader.
+     * @param {string[]} [opt_attribs] An array of attribs names. Locations will be assigned by index if not passed in
+     * @param {number[]} [opt_locations] The locations for the. A parallel array to opt_attribs letting you assign locations.
+     * @param {module:webgl-utils.ErrorCallback} opt_errorCallback callback for errors. By default it just prints an error to the console
+     *        on error. If you want something else pass an callback. It's passed an error message.
+     * @return {WebGLProgram} The created program.
+     * @memberOf module:webgl-utils
+     */
+    function createProgramFromScripts(
+        gl, shaderScriptIds, opt_attribs, opt_locations, opt_errorCallback) {
+      const shaders = [];
+      for (let ii = 0; ii < shaderScriptIds.length; ++ii) {
+        shaders.push(createShaderFromScript(
+            gl, shaderScriptIds[ii], gl[defaultShaderType[ii]], opt_errorCallback));
+      }
+      return createProgram(gl, shaders, opt_attribs, opt_locations, opt_errorCallback);
+    }
+  
+    /**
+     * Creates a program from 2 sources.
+     *
+     * @param {WebGLRenderingContext} gl The WebGLRenderingContext
+     *        to use.
+     * @param {string[]} shaderSourcess Array of sources for the
+     *        shaders. The first is assumed to be the vertex shader,
+     *        the second the fragment shader.
+     * @param {string[]} [opt_attribs] An array of attribs names. Locations will be assigned by index if not passed in
+     * @param {number[]} [opt_locations] The locations for the. A parallel array to opt_attribs letting you assign locations.
+     * @param {module:webgl-utils.ErrorCallback} opt_errorCallback callback for errors. By default it just prints an error to the console
+     *        on error. If you want something else pass an callback. It's passed an error message.
+     * @return {WebGLProgram} The created program.
+     * @memberOf module:webgl-utils
+     */
+    function createProgramFromSources(
+        gl, shaderSources, opt_attribs, opt_locations, opt_errorCallback) {
+      const shaders = [];
+      for (let ii = 0; ii < shaderSources.length; ++ii) {
+        shaders.push(loadShader(
+            gl, shaderSources[ii], gl[defaultShaderType[ii]], opt_errorCallback));
+      }
+      return createProgram(gl, shaders, opt_attribs, opt_locations, opt_errorCallback);
+    }
+  
+    /**
+     * Returns the corresponding bind point for a given sampler type
+     */
+    function getBindPointForSamplerType(gl, type) {
+      if (type === gl.SAMPLER_2D)   return gl.TEXTURE_2D;        // eslint-disable-line
+      if (type === gl.SAMPLER_CUBE) return gl.TEXTURE_CUBE_MAP;  // eslint-disable-line
+      return undefined;
+    }
+  
+    /**
+     * @typedef {Object.<string, function>} Setters
+     */
+  
+    /**
+     * Creates setter functions for all uniforms of a shader
+     * program.
+     *
+     * @see {@link module:webgl-utils.setUniforms}
+     *
+     * @param {WebGLProgram} program the program to create setters for.
+     * @returns {Object.<string, function>} an object with a setter by name for each uniform
+     * @memberOf module:webgl-utils
+     */
+    function createUniformSetters(gl, program) {
+      let textureUnit = 0;
+  
+      /**
+       * Creates a setter for a uniform of the given program with it's
+       * location embedded in the setter.
+       * @param {WebGLProgram} program
+       * @param {WebGLUniformInfo} uniformInfo
+       * @returns {function} the created setter.
+       */
+      function createUniformSetter(program, uniformInfo) {
+        const location = gl.getUniformLocation(program, uniformInfo.name);
+        const type = uniformInfo.type;
+        // Check if this uniform is an array
+        const isArray = (uniformInfo.size > 1 && uniformInfo.name.substr(-3) === '[0]');
+        if (type === gl.FLOAT && isArray) {
+          return function(v) {
+            gl.uniform1fv(location, v);
+          };
+        }
+        if (type === gl.FLOAT) {
+          return function(v) {
+            gl.uniform1f(location, v);
+          };
+        }
+        if (type === gl.FLOAT_VEC2) {
+          return function(v) {
+            gl.uniform2fv(location, v);
+          };
+        }
+        if (type === gl.FLOAT_VEC3) {
+          return function(v) {
+            gl.uniform3fv(location, v);
+          };
+        }
+        if (type === gl.FLOAT_VEC4) {
+          return function(v) {
+            gl.uniform4fv(location, v);
+          };
+        }
+        if (type === gl.INT && isArray) {
+          return function(v) {
+            gl.uniform1iv(location, v);
+          };
+        }
+        if (type === gl.INT) {
+          return function(v) {
+            gl.uniform1i(location, v);
+          };
+        }
+        if (type === gl.INT_VEC2) {
+          return function(v) {
+            gl.uniform2iv(location, v);
+          };
+        }
+        if (type === gl.INT_VEC3) {
+          return function(v) {
+            gl.uniform3iv(location, v);
+          };
+        }
+        if (type === gl.INT_VEC4) {
+          return function(v) {
+            gl.uniform4iv(location, v);
+          };
+        }
+        if (type === gl.BOOL) {
+          return function(v) {
+            gl.uniform1iv(location, v);
+          };
+        }
+        if (type === gl.BOOL_VEC2) {
+          return function(v) {
+            gl.uniform2iv(location, v);
+          };
+        }
+        if (type === gl.BOOL_VEC3) {
+          return function(v) {
+            gl.uniform3iv(location, v);
+          };
+        }
+        if (type === gl.BOOL_VEC4) {
+          return function(v) {
+            gl.uniform4iv(location, v);
+          };
+        }
+        if (type === gl.FLOAT_MAT2) {
+          return function(v) {
+            gl.uniformMatrix2fv(location, false, v);
+          };
+        }
+        if (type === gl.FLOAT_MAT3) {
+          return function(v) {
+            gl.uniformMatrix3fv(location, false, v);
+          };
+        }
+        if (type === gl.FLOAT_MAT4) {
+          return function(v) {
+            gl.uniformMatrix4fv(location, false, v);
+          };
+        }
+        if ((type === gl.SAMPLER_2D || type === gl.SAMPLER_CUBE) && isArray) {
+          const units = [];
+          for (let ii = 0; ii < info.size; ++ii) {
+            units.push(textureUnit++);
+          }
+          return function(bindPoint, units) {
+            return function(textures) {
+              gl.uniform1iv(location, units);
+              textures.forEach(function(texture, index) {
+                gl.activeTexture(gl.TEXTURE0 + units[index]);
+                gl.bindTexture(bindPoint, texture);
+              });
+            };
+          }(getBindPointForSamplerType(gl, type), units);
+        }
+        if (type === gl.SAMPLER_2D || type === gl.SAMPLER_CUBE) {
+          return function(bindPoint, unit) {
+            return function(texture) {
+              gl.uniform1i(location, unit);
+              gl.activeTexture(gl.TEXTURE0 + unit);
+              gl.bindTexture(bindPoint, texture);
+            };
+          }(getBindPointForSamplerType(gl, type), textureUnit++);
+        }
+        throw ('unknown type: 0x' + type.toString(16)); // we should never get here.
+      }
+  
+      const uniformSetters = { };
+      const numUniforms = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS);
+  
+      for (let ii = 0; ii < numUniforms; ++ii) {
+        const uniformInfo = gl.getActiveUniform(program, ii);
+        if (!uniformInfo) {
+          break;
+        }
+        let name = uniformInfo.name;
+        // remove the array suffix.
+        if (name.substr(-3) === '[0]') {
+          name = name.substr(0, name.length - 3);
+        }
+        const setter = createUniformSetter(program, uniformInfo);
+        uniformSetters[name] = setter;
+      }
+      return uniformSetters;
+    }
+  
+    /**
+     * Set uniforms and binds related textures.
+     *
+     * Example:
+     *
+     *     let programInfo = createProgramInfo(
+     *         gl, ["some-vs", "some-fs"]);
+     *
+     *     let tex1 = gl.createTexture();
+     *     let tex2 = gl.createTexture();
+     *
+     *     ... assume we setup the textures with data ...
+     *
+     *     let uniforms = {
+     *       u_someSampler: tex1,
+     *       u_someOtherSampler: tex2,
+     *       u_someColor: [1,0,0,1],
+     *       u_somePosition: [0,1,1],
+     *       u_someMatrix: [
+     *         1,0,0,0,
+     *         0,1,0,0,
+     *         0,0,1,0,
+     *         0,0,0,0,
+     *       ],
+     *     };
+     *
+     *     gl.useProgram(program);
+     *
+     * This will automatically bind the textures AND set the
+     * uniforms.
+     *
+     *     setUniforms(programInfo.uniformSetters, uniforms);
+     *
+     * For the example above it is equivalent to
+     *
+     *     let texUnit = 0;
+     *     gl.activeTexture(gl.TEXTURE0 + texUnit);
+     *     gl.bindTexture(gl.TEXTURE_2D, tex1);
+     *     gl.uniform1i(u_someSamplerLocation, texUnit++);
+     *     gl.activeTexture(gl.TEXTURE0 + texUnit);
+     *     gl.bindTexture(gl.TEXTURE_2D, tex2);
+     *     gl.uniform1i(u_someSamplerLocation, texUnit++);
+     *     gl.uniform4fv(u_someColorLocation, [1, 0, 0, 1]);
+     *     gl.uniform3fv(u_somePositionLocation, [0, 1, 1]);
+     *     gl.uniformMatrix4fv(u_someMatrix, false, [
+     *         1,0,0,0,
+     *         0,1,0,0,
+     *         0,0,1,0,
+     *         0,0,0,0,
+     *       ]);
+     *
+     * Note it is perfectly reasonable to call `setUniforms` multiple times. For example
+     *
+     *     let uniforms = {
+     *       u_someSampler: tex1,
+     *       u_someOtherSampler: tex2,
+     *     };
+     *
+     *     let moreUniforms {
+     *       u_someColor: [1,0,0,1],
+     *       u_somePosition: [0,1,1],
+     *       u_someMatrix: [
+     *         1,0,0,0,
+     *         0,1,0,0,
+     *         0,0,1,0,
+     *         0,0,0,0,
+     *       ],
+     *     };
+     *
+     *     setUniforms(programInfo.uniformSetters, uniforms);
+     *     setUniforms(programInfo.uniformSetters, moreUniforms);
+     *
+     * @param {Object.<string, function>|module:webgl-utils.ProgramInfo} setters the setters returned from
+     *        `createUniformSetters` or a ProgramInfo from {@link module:webgl-utils.createProgramInfo}.
+     * @param {Object.<string, value>} an object with values for the
+     *        uniforms.
+     * @memberOf module:webgl-utils
+     */
+    function setUniforms(setters, ...values) {
+      setters = setters.uniformSetters || setters;
+      for (const uniforms of values) {
+        Object.keys(uniforms).forEach(function(name) {
+          const setter = setters[name];
+          if (setter) {
+            setter(uniforms[name]);
+          }
+        });
+      }
+    }
+  
+    /**
+     * Creates setter functions for all attributes of a shader
+     * program. You can pass this to {@link module:webgl-utils.setBuffersAndAttributes} to set all your buffers and attributes.
+     *
+     * @see {@link module:webgl-utils.setAttributes} for example
+     * @param {WebGLProgram} program the program to create setters for.
+     * @return {Object.<string, function>} an object with a setter for each attribute by name.
+     * @memberOf module:webgl-utils
+     */
+    function createAttributeSetters(gl, program) {
+      const attribSetters = {
+      };
+  
+      function createAttribSetter(index) {
+        return function(b) {
+            if (b.value) {
+              gl.disableVertexAttribArray(index);
+              switch (b.value.length) {
+                case 4:
+                  gl.vertexAttrib4fv(index, b.value);
+                  break;
+                case 3:
+                  gl.vertexAttrib3fv(index, b.value);
+                  break;
+                case 2:
+                  gl.vertexAttrib2fv(index, b.value);
+                  break;
+                case 1:
+                  gl.vertexAttrib1fv(index, b.value);
+                  break;
+                default:
+                  throw new Error('the length of a float constant value must be between 1 and 4!');
+              }
+            } else {
+              gl.bindBuffer(gl.ARRAY_BUFFER, b.buffer);
+              gl.enableVertexAttribArray(index);
+              gl.vertexAttribPointer(
+                  index, b.numComponents || b.size, b.type || gl.FLOAT, b.normalize || false, b.stride || 0, b.offset || 0);
+            }
+          };
+      }
+  
+      const numAttribs = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES);
+      for (let ii = 0; ii < numAttribs; ++ii) {
+        const attribInfo = gl.getActiveAttrib(program, ii);
+        if (!attribInfo) {
+          break;
+        }
+        const index = gl.getAttribLocation(program, attribInfo.name);
+        attribSetters[attribInfo.name] = createAttribSetter(index);
+      }
+  
+      return attribSetters;
+    }
+  
+    /**
+     * Sets attributes and binds buffers (deprecated... use {@link module:webgl-utils.setBuffersAndAttributes})
+     *
+     * Example:
+     *
+     *     let program = createProgramFromScripts(
+     *         gl, ["some-vs", "some-fs"]);
+     *
+     *     let attribSetters = createAttributeSetters(program);
+     *
+     *     let positionBuffer = gl.createBuffer();
+     *     let texcoordBuffer = gl.createBuffer();
+     *
+     *     let attribs = {
+     *       a_position: {buffer: positionBuffer, numComponents: 3},
+     *       a_texcoord: {buffer: texcoordBuffer, numComponents: 2},
+     *     };
+     *
+     *     gl.useProgram(program);
+     *
+     * This will automatically bind the buffers AND set the
+     * attributes.
+     *
+     *     setAttributes(attribSetters, attribs);
+     *
+     * Properties of attribs. For each attrib you can add
+     * properties:
+     *
+     * *   type: the type of data in the buffer. Default = gl.FLOAT
+     * *   normalize: whether or not to normalize the data. Default = false
+     * *   stride: the stride. Default = 0
+     * *   offset: offset into the buffer. Default = 0
+     *
+     * For example if you had 3 value float positions, 2 value
+     * float texcoord and 4 value uint8 colors you'd setup your
+     * attribs like this
+     *
+     *     let attribs = {
+     *       a_position: {buffer: positionBuffer, numComponents: 3},
+     *       a_texcoord: {buffer: texcoordBuffer, numComponents: 2},
+     *       a_color: {
+     *         buffer: colorBuffer,
+     *         numComponents: 4,
+     *         type: gl.UNSIGNED_BYTE,
+     *         normalize: true,
+     *       },
+     *     };
+     *
+     * @param {Object.<string, function>|model:webgl-utils.ProgramInfo} setters Attribute setters as returned from createAttributeSetters or a ProgramInfo as returned {@link module:webgl-utils.createProgramInfo}
+     * @param {Object.<string, module:webgl-utils.AttribInfo>} attribs AttribInfos mapped by attribute name.
+     * @memberOf module:webgl-utils
+     * @deprecated use {@link module:webgl-utils.setBuffersAndAttributes}
+     */
+    function setAttributes(setters, attribs) {
+      setters = setters.attribSetters || setters;
+      Object.keys(attribs).forEach(function(name) {
+        const setter = setters[name];
+        if (setter) {
+          setter(attribs[name]);
+        }
+      });
+    }
+  
+    /**
+     * Creates a vertex array object and then sets the attributes
+     * on it
+     *
+     * @param {WebGLRenderingContext} gl The WebGLRenderingContext
+     *        to use.
+     * @param {Object.<string, function>} setters Attribute setters as returned from createAttributeSetters
+     * @param {Object.<string, module:webgl-utils.AttribInfo>} attribs AttribInfos mapped by attribute name.
+     * @param {WebGLBuffer} [indices] an optional ELEMENT_ARRAY_BUFFER of indices
+     */
+    function createVAOAndSetAttributes(gl, setters, attribs, indices) {
+      const vao = gl.createVertexArray();
+      gl.bindVertexArray(vao);
+      setAttributes(setters, attribs);
+      if (indices) {
+        gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indices);
+      }
+      // We unbind this because otherwise any change to ELEMENT_ARRAY_BUFFER
+      // like when creating buffers for other stuff will mess up this VAO's binding
+      gl.bindVertexArray(null);
+      return vao;
+    }
+  
+    /**
+     * Creates a vertex array object and then sets the attributes
+     * on it
+     *
+     * @param {WebGLRenderingContext} gl The WebGLRenderingContext
+     *        to use.
+     * @param {Object.<string, function>| module:webgl-utils.ProgramInfo} programInfo as returned from createProgramInfo or Attribute setters as returned from createAttributeSetters
+     * @param {module:webgl-utils:BufferInfo} bufferInfo BufferInfo as returned from createBufferInfoFromArrays etc...
+     * @param {WebGLBuffer} [indices] an optional ELEMENT_ARRAY_BUFFER of indices
+     */
+    function createVAOFromBufferInfo(gl, programInfo, bufferInfo) {
+      return createVAOAndSetAttributes(gl, programInfo.attribSetters || programInfo, bufferInfo.attribs, bufferInfo.indices);
+    }
+  
+    /**
+     * @typedef {Object} ProgramInfo
+     * @property {WebGLProgram} program A shader program
+     * @property {Object<string, function>} uniformSetters: object of setters as returned from createUniformSetters,
+     * @property {Object<string, function>} attribSetters: object of setters as returned from createAttribSetters,
+     * @memberOf module:webgl-utils
+     */
+  
+    /**
+     * Creates a ProgramInfo from 2 sources.
+     *
+     * A ProgramInfo contains
+     *
+     *     programInfo = {
+     *        program: WebGLProgram,
+     *        uniformSetters: object of setters as returned from createUniformSetters,
+     *        attribSetters: object of setters as returned from createAttribSetters,
+     *     }
+     *
+     * @param {WebGLRenderingContext} gl The WebGLRenderingContext
+     *        to use.
+     * @param {string[]} shaderSourcess Array of sources for the
+     *        shaders or ids. The first is assumed to be the vertex shader,
+     *        the second the fragment shader.
+     * @param {string[]} [opt_attribs] An array of attribs names. Locations will be assigned by index if not passed in
+     * @param {number[]} [opt_locations] The locations for the. A parallel array to opt_attribs letting you assign locations.
+     * @param {module:webgl-utils.ErrorCallback} opt_errorCallback callback for errors. By default it just prints an error to the console
+     *        on error. If you want something else pass an callback. It's passed an error message.
+     * @return {module:webgl-utils.ProgramInfo} The created program.
+     * @memberOf module:webgl-utils
+     */
+    function createProgramInfo(
+        gl, shaderSources, opt_attribs, opt_locations, opt_errorCallback) {
+      shaderSources = shaderSources.map(function(source) {
+        const script = document.getElementById(source);
+        return script ? script.text : source;
+      });
+      const program = webglUtils.createProgramFromSources(gl, shaderSources, opt_attribs, opt_locations, opt_errorCallback);
+      if (!program) {
+        return null;
+      }
+      const uniformSetters = createUniformSetters(gl, program);
+      const attribSetters = createAttributeSetters(gl, program);
+      return {
+        program: program,
+        uniformSetters: uniformSetters,
+        attribSetters: attribSetters,
+      };
+    }
+  
+    /**
+     * Sets attributes and buffers including the `ELEMENT_ARRAY_BUFFER` if appropriate
+     *
+     * Example:
+     *
+     *     let programInfo = createProgramInfo(
+     *         gl, ["some-vs", "some-fs"]);
+     *
+     *     let arrays = {
+     *       position: { numComponents: 3, data: [0, 0, 0, 10, 0, 0, 0, 10, 0, 10, 10, 0], },
+     *       texcoord: { numComponents: 2, data: [0, 0, 0, 1, 1, 0, 1, 1],                 },
+     *     };
+     *
+     *     let bufferInfo = createBufferInfoFromArrays(gl, arrays);
+     *
+     *     gl.useProgram(programInfo.program);
+     *
+     * This will automatically bind the buffers AND set the
+     * attributes.
+     *
+     *     setBuffersAndAttributes(programInfo.attribSetters, bufferInfo);
+     *
+     * For the example above it is equivilent to
+     *
+     *     gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
+     *     gl.enableVertexAttribArray(a_positionLocation);
+     *     gl.vertexAttribPointer(a_positionLocation, 3, gl.FLOAT, false, 0, 0);
+     *     gl.bindBuffer(gl.ARRAY_BUFFER, texcoordBuffer);
+     *     gl.enableVertexAttribArray(a_texcoordLocation);
+     *     gl.vertexAttribPointer(a_texcoordLocation, 4, gl.FLOAT, false, 0, 0);
+     *
+     * @param {WebGLRenderingContext} gl A WebGLRenderingContext.
+     * @param {Object.<string, function>} setters Attribute setters as returned from `createAttributeSetters`
+     * @param {module:webgl-utils.BufferInfo} buffers a BufferInfo as returned from `createBufferInfoFromArrays`.
+     * @memberOf module:webgl-utils
+     */
+    function setBuffersAndAttributes(gl, setters, buffers) {
+      setAttributes(setters, buffers.attribs);
+      if (buffers.indices) {
+        gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices);
+      }
+    }
+  
+    // Add your prefix here.
+    const browserPrefixes = [
+      '',
+      'MOZ_',
+      'OP_',
+      'WEBKIT_',
+    ];
+  
+    /**
+     * Given an extension name like WEBGL_compressed_texture_s3tc
+     * returns the supported version extension, like
+     * WEBKIT_WEBGL_compressed_teture_s3tc
+     * @param {string} name Name of extension to look for
+     * @return {WebGLExtension} The extension or undefined if not
+     *     found.
+     * @memberOf module:webgl-utils
+     */
+    function getExtensionWithKnownPrefixes(gl, name) {
+      for (let ii = 0; ii < browserPrefixes.length; ++ii) {
+        const prefixedName = browserPrefixes[ii] + name;
+        const ext = gl.getExtension(prefixedName);
+        if (ext) {
+          return ext;
+        }
+      }
+      return undefined;
+    }
+  
+    /**
+     * Resize a canvas to match the size its displayed.
+     * @param {HTMLCanvasElement} canvas The canvas to resize.
+     * @param {number} [multiplier] amount to multiply by.
+     *    Pass in window.devicePixelRatio for native pixels.
+     * @return {boolean} true if the canvas was resized.
+     * @memberOf module:webgl-utils
+     */
+    function resizeCanvasToDisplaySize(canvas, multiplier) {
+      multiplier = multiplier || 1;
+      const width  = canvas.clientWidth  * multiplier | 0;
+      const height = canvas.clientHeight * multiplier | 0;
+      if (canvas.width !== width ||  canvas.height !== height) {
+        canvas.width  = width;
+        canvas.height = height;
+        return true;
+      }
+      return false;
+    }
+  
+    // Add `push` to a typed array. It just keeps a 'cursor'
+    // and allows use to `push` values into the array so we
+    // don't have to manually compute offsets
+    function augmentTypedArray(typedArray, numComponents) {
+      let cursor = 0;
+      typedArray.push = function() {
+        for (let ii = 0; ii < arguments.length; ++ii) {
+          const value = arguments[ii];
+          if (value instanceof Array || (value.buffer && value.buffer instanceof ArrayBuffer)) {
+            for (let jj = 0; jj < value.length; ++jj) {
+              typedArray[cursor++] = value[jj];
+            }
+          } else {
+            typedArray[cursor++] = value;
+          }
+        }
+      };
+      typedArray.reset = function(opt_index) {
+        cursor = opt_index || 0;
+      };
+      typedArray.numComponents = numComponents;
+      Object.defineProperty(typedArray, 'numElements', {
+        get: function() {
+          return this.length / this.numComponents | 0;
+        },
+      });
+      return typedArray;
+    }
+  
+    /**
+     * creates a typed array with a `push` function attached
+     * so that you can easily *push* values.
+     *
+     * `push` can take multiple arguments. If an argument is an array each element
+     * of the array will be added to the typed array.
+     *
+     * Example:
+     *
+     *     let array = createAugmentedTypedArray(3, 2);  // creates a Float32Array with 6 values
+     *     array.push(1, 2, 3);
+     *     array.push([4, 5, 6]);
+     *     // array now contains [1, 2, 3, 4, 5, 6]
+     *
+     * Also has `numComponents` and `numElements` properties.
+     *
+     * @param {number} numComponents number of components
+     * @param {number} numElements number of elements. The total size of the array will be `numComponents * numElements`.
+     * @param {constructor} opt_type A constructor for the type. Default = `Float32Array`.
+     * @return {ArrayBuffer} A typed array.
+     * @memberOf module:webgl-utils
+     */
+    function createAugmentedTypedArray(numComponents, numElements, opt_type) {
+      const Type = opt_type || Float32Array;
+      return augmentTypedArray(new Type(numComponents * numElements), numComponents);
+    }
+  
+    function createBufferFromTypedArray(gl, array, type, drawType) {
+      type = type || gl.ARRAY_BUFFER;
+      const buffer = gl.createBuffer();
+      gl.bindBuffer(type, buffer);
+      gl.bufferData(type, array, drawType || gl.STATIC_DRAW);
+      return buffer;
+    }
+  
+    function allButIndices(name) {
+      return name !== 'indices';
+    }
+  
+    function createMapping(obj) {
+      const mapping = {};
+      Object.keys(obj).filter(allButIndices).forEach(function(key) {
+        mapping['a_' + key] = key;
+      });
+      return mapping;
+    }
+  
+    function getGLTypeForTypedArray(gl, typedArray) {
+      if (typedArray instanceof Int8Array)    { return gl.BYTE; }            // eslint-disable-line
+      if (typedArray instanceof Uint8Array)   { return gl.UNSIGNED_BYTE; }   // eslint-disable-line
+      if (typedArray instanceof Int16Array)   { return gl.SHORT; }           // eslint-disable-line
+      if (typedArray instanceof Uint16Array)  { return gl.UNSIGNED_SHORT; }  // eslint-disable-line
+      if (typedArray instanceof Int32Array)   { return gl.INT; }             // eslint-disable-line
+      if (typedArray instanceof Uint32Array)  { return gl.UNSIGNED_INT; }    // eslint-disable-line
+      if (typedArray instanceof Float32Array) { return gl.FLOAT; }           // eslint-disable-line
+      throw 'unsupported typed array type';
+    }
+  
+    // This is really just a guess. Though I can't really imagine using
+    // anything else? Maybe for some compression?
+    function getNormalizationForTypedArray(typedArray) {
+      if (typedArray instanceof Int8Array)    { return true; }  // eslint-disable-line
+      if (typedArray instanceof Uint8Array)   { return true; }  // eslint-disable-line
+      return false;
+    }
+  
+    function isArrayBuffer(a) {
+      return a.buffer && a.buffer instanceof ArrayBuffer;
+    }
+  
+    function guessNumComponentsFromName(name, length) {
+      let numComponents;
+      if (name.indexOf('coord') >= 0) {
+        numComponents = 2;
+      } else if (name.indexOf('color') >= 0) {
+        numComponents = 4;
+      } else {
+        numComponents = 3;  // position, normals, indices ...
+      }
+  
+      if (length % numComponents > 0) {
+        throw 'can not guess numComponents. You should specify it.';
+      }
+  
+      return numComponents;
+    }
+  
+    function makeTypedArray(array, name) {
+      if (isArrayBuffer(array)) {
+        return array;
+      }
+  
+      if (array.data && isArrayBuffer(array.data)) {
+        return array.data;
+      }
+  
+      if (Array.isArray(array)) {
+        array = {
+          data: array,
+        };
+      }
+  
+      if (!array.numComponents) {
+        array.numComponents = guessNumComponentsFromName(name, array.length);
+      }
+  
+      let type = array.type;
+      if (!type) {
+        if (name === 'indices') {
+          type = Uint16Array;
+        }
+      }
+      const typedArray = createAugmentedTypedArray(array.numComponents, array.data.length / array.numComponents | 0, type);
+      typedArray.push(array.data);
+      return typedArray;
+    }
+  
+    /**
+     * @typedef {Object} AttribInfo
+     * @property {number} [numComponents] the number of components for this attribute.
+     * @property {number} [size] the number of components for this attribute.
+     * @property {number} [type] the type of the attribute (eg. `gl.FLOAT`, `gl.UNSIGNED_BYTE`, etc...) Default = `gl.FLOAT`
+     * @property {boolean} [normalized] whether or not to normalize the data. Default = false
+     * @property {number} [offset] offset into buffer in bytes. Default = 0
+     * @property {number} [stride] the stride in bytes per element. Default = 0
+     * @property {WebGLBuffer} buffer the buffer that contains the data for this attribute
+     * @memberOf module:webgl-utils
+     */
+  
+  
+    /**
+     * Creates a set of attribute data and WebGLBuffers from set of arrays
+     *
+     * Given
+     *
+     *      let arrays = {
+     *        position: { numComponents: 3, data: [0, 0, 0, 10, 0, 0, 0, 10, 0, 10, 10, 0], },
+     *        texcoord: { numComponents: 2, data: [0, 0, 0, 1, 1, 0, 1, 1],                 },
+     *        normal:   { numComponents: 3, data: [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1],     },
+     *        color:    { numComponents: 4, data: [255, 255, 255, 255, 255, 0, 0, 255, 0, 0, 255, 255], type: Uint8Array, },
+     *        indices:  { numComponents: 3, data: [0, 1, 2, 1, 2, 3],                       },
+     *      };
+     *
+     * returns something like
+     *
+     *      let attribs = {
+     *        a_position: { numComponents: 3, type: gl.FLOAT,         normalize: false, buffer: WebGLBuffer, },
+     *        a_texcoord: { numComponents: 2, type: gl.FLOAT,         normalize: false, buffer: WebGLBuffer, },
+     *        a_normal:   { numComponents: 3, type: gl.FLOAT,         normalize: false, buffer: WebGLBuffer, },
+     *        a_color:    { numComponents: 4, type: gl.UNSIGNED_BYTE, normalize: true,  buffer: WebGLBuffer, },
+     *      };
+     *
+     * @param {WebGLRenderingContext} gl The webgl rendering context.
+     * @param {Object.<string, array|typedarray>} arrays The arrays
+     * @param {Object.<string, string>} [opt_mapping] mapping from attribute name to array name.
+     *     if not specified defaults to "a_name" -> "name".
+     * @return {Object.<string, module:webgl-utils.AttribInfo>} the attribs
+     * @memberOf module:webgl-utils
+     */
+    function createAttribsFromArrays(gl, arrays, opt_mapping) {
+      const mapping = opt_mapping || createMapping(arrays);
+      const attribs = {};
+      Object.keys(mapping).forEach(function(attribName) {
+        const bufferName = mapping[attribName];
+        const origArray = arrays[bufferName];
+        if (origArray.value) {
+          attribs[attribName] = {
+            value: origArray.value,
+          };
+        } else {
+          const array = makeTypedArray(origArray, bufferName);
+          attribs[attribName] = {
+            buffer:        createBufferFromTypedArray(gl, array),
+            numComponents: origArray.numComponents || array.numComponents || guessNumComponentsFromName(bufferName),
+            type:          getGLTypeForTypedArray(gl, array),
+            normalize:     getNormalizationForTypedArray(array),
+          };
+        }
+      });
+      return attribs;
+    }
+  
+    function getArray(array) {
+      return array.length ? array : array.data;
+    }
+  
+    const texcoordRE = /coord|texture/i;
+    const colorRE = /color|colour/i;
+  
+    function guessNumComponentsFromName(name, length) {
+      let numComponents;
+      if (texcoordRE.test(name)) {
+        numComponents = 2;
+      } else if (colorRE.test(name)) {
+        numComponents = 4;
+      } else {
+        numComponents = 3;  // position, normals, indices ...
+      }
+  
+      if (length % numComponents > 0) {
+        throw new Error(`Can not guess numComponents for attribute '${name}'. Tried ${numComponents} but ${length} values is not evenly divisible by ${numComponents}. You should specify it.`);
+      }
+  
+      return numComponents;
+    }
+  
+    function getNumComponents(array, arrayName) {
+      return array.numComponents || array.size || guessNumComponentsFromName(arrayName, getArray(array).length);
+    }
+  
+    /**
+     * tries to get the number of elements from a set of arrays.
+     */
+    const positionKeys = ['position', 'positions', 'a_position'];
+    function getNumElementsFromNonIndexedArrays(arrays) {
+      let key;
+      for (const k of positionKeys) {
+        if (k in arrays) {
+          key = k;
+          break;
+        }
+      }
+      key = key || Object.keys(arrays)[0];
+      const array = arrays[key];
+      const length = getArray(array).length;
+      const numComponents = getNumComponents(array, key);
+      const numElements = length / numComponents;
+      if (length % numComponents > 0) {
+        throw new Error(`numComponents ${numComponents} not correct for length ${length}`);
+      }
+      return numElements;
+    }
+  
+    /**
+     * @typedef {Object} BufferInfo
+     * @property {number} numElements The number of elements to pass to `gl.drawArrays` or `gl.drawElements`.
+     * @property {WebGLBuffer} [indices] The indices `ELEMENT_ARRAY_BUFFER` if any indices exist.
+     * @property {Object.<string, module:webgl-utils.AttribInfo>} attribs The attribs approriate to call `setAttributes`
+     * @memberOf module:webgl-utils
+     */
+  
+  
+    /**
+     * Creates a BufferInfo from an object of arrays.
+     *
+     * This can be passed to {@link module:webgl-utils.setBuffersAndAttributes} and to
+     * {@link module:webgl-utils:drawBufferInfo}.
+     *
+     * Given an object like
+     *
+     *     let arrays = {
+     *       position: { numComponents: 3, data: [0, 0, 0, 10, 0, 0, 0, 10, 0, 10, 10, 0], },
+     *       texcoord: { numComponents: 2, data: [0, 0, 0, 1, 1, 0, 1, 1],                 },
+     *       normal:   { numComponents: 3, data: [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1],     },
+     *       indices:  { numComponents: 3, data: [0, 1, 2, 1, 2, 3],                       },
+     *     };
+     *
+     *  Creates an BufferInfo like this
+     *
+     *     bufferInfo = {
+     *       numElements: 4,        // or whatever the number of elements is
+     *       indices: WebGLBuffer,  // this property will not exist if there are no indices
+     *       attribs: {
+     *         a_position: { buffer: WebGLBuffer, numComponents: 3, },
+     *         a_normal:   { buffer: WebGLBuffer, numComponents: 3, },
+     *         a_texcoord: { buffer: WebGLBuffer, numComponents: 2, },
+     *       },
+     *     };
+     *
+     *  The properties of arrays can be JavaScript arrays in which case the number of components
+     *  will be guessed.
+     *
+     *     let arrays = {
+     *        position: [0, 0, 0, 10, 0, 0, 0, 10, 0, 10, 10, 0],
+     *        texcoord: [0, 0, 0, 1, 1, 0, 1, 1],
+     *        normal:   [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1],
+     *        indices:  [0, 1, 2, 1, 2, 3],
+     *     };
+     *
+     *  They can also by TypedArrays
+     *
+     *     let arrays = {
+     *        position: new Float32Array([0, 0, 0, 10, 0, 0, 0, 10, 0, 10, 10, 0]),
+     *        texcoord: new Float32Array([0, 0, 0, 1, 1, 0, 1, 1]),
+     *        normal:   new Float32Array([0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]),
+     *        indices:  new Uint16Array([0, 1, 2, 1, 2, 3]),
+     *     };
+     *
+     *  Or augmentedTypedArrays
+     *
+     *     let positions = createAugmentedTypedArray(3, 4);
+     *     let texcoords = createAugmentedTypedArray(2, 4);
+     *     let normals   = createAugmentedTypedArray(3, 4);
+     *     let indices   = createAugmentedTypedArray(3, 2, Uint16Array);
+     *
+     *     positions.push([0, 0, 0, 10, 0, 0, 0, 10, 0, 10, 10, 0]);
+     *     texcoords.push([0, 0, 0, 1, 1, 0, 1, 1]);
+     *     normals.push([0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]);
+     *     indices.push([0, 1, 2, 1, 2, 3]);
+     *
+     *     let arrays = {
+     *        position: positions,
+     *        texcoord: texcoords,
+     *        normal:   normals,
+     *        indices:  indices,
+     *     };
+     *
+     * For the last example it is equivalent to
+     *
+     *     let bufferInfo = {
+     *       attribs: {
+     *         a_position: { numComponents: 3, buffer: gl.createBuffer(), },
+     *         a_texcoods: { numComponents: 2, buffer: gl.createBuffer(), },
+     *         a_normals: { numComponents: 3, buffer: gl.createBuffer(), },
+     *       },
+     *       indices: gl.createBuffer(),
+     *       numElements: 6,
+     *     };
+     *
+     *     gl.bindBuffer(gl.ARRAY_BUFFER, bufferInfo.attribs.a_position.buffer);
+     *     gl.bufferData(gl.ARRAY_BUFFER, arrays.position, gl.STATIC_DRAW);
+     *     gl.bindBuffer(gl.ARRAY_BUFFER, bufferInfo.attribs.a_texcoord.buffer);
+     *     gl.bufferData(gl.ARRAY_BUFFER, arrays.texcoord, gl.STATIC_DRAW);
+     *     gl.bindBuffer(gl.ARRAY_BUFFER, bufferInfo.attribs.a_normal.buffer);
+     *     gl.bufferData(gl.ARRAY_BUFFER, arrays.normal, gl.STATIC_DRAW);
+     *     gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, bufferInfo.indices);
+     *     gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, arrays.indices, gl.STATIC_DRAW);
+     *
+     * @param {WebGLRenderingContext} gl A WebGLRenderingContext
+     * @param {Object.<string, array|object|typedarray>} arrays Your data
+     * @param {Object.<string, string>} [opt_mapping] an optional mapping of attribute to array name.
+     *    If not passed in it's assumed the array names will be mapped to an attribute
+     *    of the same name with "a_" prefixed to it. An other words.
+     *
+     *        let arrays = {
+     *           position: ...,
+     *           texcoord: ...,
+     *           normal:   ...,
+     *           indices:  ...,
+     *        };
+     *
+     *        bufferInfo = createBufferInfoFromArrays(gl, arrays);
+     *
+     *    Is the same as
+     *
+     *        let arrays = {
+     *           position: ...,
+     *           texcoord: ...,
+     *           normal:   ...,
+     *           indices:  ...,
+     *        };
+     *
+     *        let mapping = {
+     *          a_position: "position",
+     *          a_texcoord: "texcoord",
+     *          a_normal:   "normal",
+     *        };
+     *
+     *        bufferInfo = createBufferInfoFromArrays(gl, arrays, mapping);
+     *
+     * @return {module:webgl-utils.BufferInfo} A BufferInfo
+     * @memberOf module:webgl-utils
+     */
+    function createBufferInfoFromArrays(gl, arrays, opt_mapping) {
+      const bufferInfo = {
+        attribs: createAttribsFromArrays(gl, arrays, opt_mapping),
+      };
+      let indices = arrays.indices;
+      if (indices) {
+        indices = makeTypedArray(indices, 'indices');
+        bufferInfo.indices = createBufferFromTypedArray(gl, indices, gl.ELEMENT_ARRAY_BUFFER);
+        bufferInfo.numElements = indices.length;
+      } else {
+        bufferInfo.numElements = getNumElementsFromNonIndexedArrays(arrays);
+      }
+  
+      return bufferInfo;
+    }
+  
+    /**
+     * Creates buffers from typed arrays
+     *
+     * Given something like this
+     *
+     *     let arrays = {
+     *        positions: [1, 2, 3],
+     *        normals: [0, 0, 1],
+     *     }
+     *
+     * returns something like
+     *
+     *     buffers = {
+     *       positions: WebGLBuffer,
+     *       normals: WebGLBuffer,
+     *     }
+     *
+     * If the buffer is named 'indices' it will be made an ELEMENT_ARRAY_BUFFER.
+     *
+     * @param {WebGLRenderingContext} gl A WebGLRenderingContext.
+     * @param {Object<string, array|typedarray>} arrays
+     * @return {Object<string, WebGLBuffer>} returns an object with one WebGLBuffer per array
+     * @memberOf module:webgl-utils
+     */
+    function createBuffersFromArrays(gl, arrays) {
+      const buffers = { };
+      Object.keys(arrays).forEach(function(key) {
+        const type = key === 'indices' ? gl.ELEMENT_ARRAY_BUFFER : gl.ARRAY_BUFFER;
+        const array = makeTypedArray(arrays[key], name);
+        buffers[key] = createBufferFromTypedArray(gl, array, type);
+      });
+  
+      // hrm
+      if (arrays.indices) {
+        buffers.numElements = arrays.indices.length;
+      } else if (arrays.position) {
+        buffers.numElements = arrays.position.length / 3;
+      }
+  
+      return buffers;
+    }
+  
+    /**
+     * Calls `gl.drawElements` or `gl.drawArrays`, whichever is appropriate
+     *
+     * normally you'd call `gl.drawElements` or `gl.drawArrays` yourself
+     * but calling this means if you switch from indexed data to non-indexed
+     * data you don't have to remember to update your draw call.
+     *
+     * @param {WebGLRenderingContext} gl A WebGLRenderingContext
+     * @param {module:webgl-utils.BufferInfo} bufferInfo as returned from createBufferInfoFromArrays
+     * @param {enum} [primitiveType] eg (gl.TRIANGLES, gl.LINES, gl.POINTS, gl.TRIANGLE_STRIP, ...)
+     * @param {number} [count] An optional count. Defaults to bufferInfo.numElements
+     * @param {number} [offset] An optional offset. Defaults to 0.
+     * @memberOf module:webgl-utils
+     */
+    function drawBufferInfo(gl, bufferInfo, primitiveType, count, offset) {
+      const indices = bufferInfo.indices;
+      primitiveType = primitiveType === undefined ? gl.TRIANGLES : primitiveType;
+      const numElements = count === undefined ? bufferInfo.numElements : count;
+      offset = offset === undefined ? 0 : offset;
+      if (indices) {
+        gl.drawElements(primitiveType, numElements, gl.UNSIGNED_SHORT, offset);
+      } else {
+        gl.drawArrays(primitiveType, offset, numElements);
+      }
+    }
+  
+    /**
+     * @typedef {Object} DrawObject
+     * @property {module:webgl-utils.ProgramInfo} programInfo A ProgramInfo as returned from createProgramInfo
+     * @property {module:webgl-utils.BufferInfo} bufferInfo A BufferInfo as returned from createBufferInfoFromArrays
+     * @property {Object<string, ?>} uniforms The values for the uniforms
+     * @memberOf module:webgl-utils
+     */
+  
+    /**
+     * Draws a list of objects
+     * @param {WebGLRenderingContext} gl A WebGLRenderingContext
+     * @param {DrawObject[]} objectsToDraw an array of objects to draw.
+     * @memberOf module:webgl-utils
+     */
+    function drawObjectList(gl, objectsToDraw) {
+      let lastUsedProgramInfo = null;
+      let lastUsedBufferInfo = null;
+  
+      objectsToDraw.forEach(function(object) {
+        const programInfo = object.programInfo;
+        const bufferInfo = object.bufferInfo;
+        let bindBuffers = false;
+  
+        if (programInfo !== lastUsedProgramInfo) {
+          lastUsedProgramInfo = programInfo;
+          gl.useProgram(programInfo.program);
+          bindBuffers = true;
+        }
+  
+        // Setup all the needed attributes.
+        if (bindBuffers || bufferInfo !== lastUsedBufferInfo) {
+          lastUsedBufferInfo = bufferInfo;
+          setBuffersAndAttributes(gl, programInfo.attribSetters, bufferInfo);
+        }
+  
+        // Set the uniforms.
+        setUniforms(programInfo.uniformSetters, object.uniforms);
+  
+        // Draw
+        drawBufferInfo(gl, bufferInfo);
+      });
+    }
+  
+    function glEnumToString(gl, v) {
+      const results = [];
+      for (const key in gl) {
+        if (gl[key] === v) {
+          results.push(key);
+        }
+      }
+      return results.length
+          ? results.join(' | ')
+          : `0x${v.toString(16)}`;
+    }
+  
+    const isIE = /*@cc_on!@*/false || !!document.documentMode;
+    // Edge 20+
+    const isEdge = !isIE && !!window.StyleMedia;
+    if (isEdge) {
+      // Hack for Edge. Edge's WebGL implmentation is crap still and so they
+      // only respond to "experimental-webgl". I don't want to clutter the
+      // examples with that so his hack works around it
+      HTMLCanvasElement.prototype.getContext = function(origFn) {
+        return function() {
+          let args = arguments;
+          const type = args[0];
+          if (type === 'webgl') {
+            args = [].slice.call(arguments);
+            args[0] = 'experimental-webgl';
+          }
+          return origFn.apply(this, args);
+        };
+      }(HTMLCanvasElement.prototype.getContext);
+    }
+  
+    return {
+      createAugmentedTypedArray: createAugmentedTypedArray,
+      createAttribsFromArrays: createAttribsFromArrays,
+      createBuffersFromArrays: createBuffersFromArrays,
+      createBufferInfoFromArrays: createBufferInfoFromArrays,
+      createAttributeSetters: createAttributeSetters,
+      createProgram: createProgram,
+      createProgramFromScripts: createProgramFromScripts,
+      createProgramFromSources: createProgramFromSources,
+      createProgramInfo: createProgramInfo,
+      createUniformSetters: createUniformSetters,
+      createVAOAndSetAttributes: createVAOAndSetAttributes,
+      createVAOFromBufferInfo: createVAOFromBufferInfo,
+      drawBufferInfo: drawBufferInfo,
+      drawObjectList: drawObjectList,
+      glEnumToString: glEnumToString,
+      getExtensionWithKnownPrefixes: getExtensionWithKnownPrefixes,
+      resizeCanvasToDisplaySize: resizeCanvasToDisplaySize,
+      setAttributes: setAttributes,
+      setBuffersAndAttributes: setBuffersAndAttributes,
+      setUniforms: setUniforms,
+    };
+  
+  }));
+  
\ No newline at end of file