from model import common import torch.nn as nn url = { 'r16f64x2': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x2-1bc95232.pt', 'r16f64x3': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x3-abf2a44e.pt', 'r16f64x4': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x4-6b446fab.pt', 'r32f256x2': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x2-0edfb8a3.pt', 'r32f256x3': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x3-ea3ef2c6.pt', 'r32f256x4': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x4-4f62e9ef.pt' } def make_model(args, parent=False): return EDSR(args) class EDSR(nn.Module): def __init__(self, args, conv=common.default_conv): super(EDSR, self).__init__() n_resblocks = args.n_resblocks n_feats = args.n_feats kernel_size = 3 scale = args.scale[0] act = nn.ReLU(True) url_name = 'r{}f{}x{}'.format(n_resblocks, n_feats, scale) if url_name in url: self.url = url[url_name] else: self.url = None self.sub_mean = common.MeanShift(args.rgb_range) self.add_mean = common.MeanShift(args.rgb_range, sign=1) # define head module m_head = [conv(args.n_colors, n_feats, kernel_size)] # define body module m_body = [ common.ResBlock( conv, n_feats, kernel_size, act=act, res_scale=args.res_scale ) for _ in range(n_resblocks) ] m_body.append(conv(n_feats, n_feats, kernel_size)) # define tail module m_tail = [ common.Upsampler(conv, scale, n_feats, act=False), conv(n_feats, args.n_colors, kernel_size) ] self.head = nn.Sequential(*m_head) self.body = nn.Sequential(*m_body) self.tail = nn.Sequential(*m_tail) def forward(self, x): x = self.sub_mean(x) x = self.head(x) res = self.body(x) res += x x = self.tail(res) x = self.add_mean(x) return x def load_state_dict(self, state_dict, strict=True): own_state = self.state_dict() for name, param in state_dict.items(): if name in own_state: if isinstance(param, nn.Parameter): param = param.data try: own_state[name].copy_(param) except Exception: if name.find('tail') == -1: raise RuntimeError('While copying the parameter named {}, ' 'whose dimensions in the model are {} and ' 'whose dimensions in the checkpoint are {}.' .format(name, own_state[name].size(), param.size())) elif strict: if name.find('tail') == -1: raise KeyError('unexpected key "{}" in state_dict' .format(name))