Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
L
Lightweight super-resolution using knowledge distillation
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
영제 임
Lightweight super-resolution using knowledge distillation
Commits
32cfb6a4
Commit
32cfb6a4
authored
Nov 5, 2018
by
Sanghyun Son
Browse files
Options
Downloads
Patches
Plain Diff
need to test a new forward_chop
parent
60c2ba2f
No related branches found
No related tags found
1 merge request
!1
Jan 09, 2018 updates
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/model/__init__.py
+46
-48
46 additions, 48 deletions
src/model/__init__.py
with
46 additions
and
48 deletions
src/model/__init__.py
+
46
−
48
View file @
32cfb6a4
...
...
@@ -76,12 +76,11 @@ class Model(nn.Module):
for
s
in
save_dirs
:
torch
.
save
(
target
.
state_dict
(),
s
)
def
load
(
self
,
apath
,
pre_train
=
''
,
resume
=-
1
,
cpu
=
False
):
load_from
=
None
kwargs
=
{}
if
cpu
:
kwargs
=
{
'
map_location
'
:
lambda
storage
,
loc
:
storage
}
else
:
kwargs
=
{}
load_from
=
None
if
resume
==
-
1
:
load_from
=
torch
.
load
(
os
.
path
.
join
(
apath
,
'
model_latest.pt
'
),
...
...
@@ -106,61 +105,61 @@ class Model(nn.Module):
**
kwargs
)
if
load_from
:
self
.
get_model
().
load_state_dict
(
load_from
,
strict
=
False
)
if
load_from
:
self
.
get_model
().
load_state_dict
(
load_from
,
strict
=
False
)
def
forward_chop
(
self
,
*
args
,
shave
=
10
,
min_size
=
160000
):
if
self
.
input_large
:
scale
=
1
else
:
scale
=
self
.
scale
[
self
.
idx_scale
]
scale
=
1
if
self
.
input_large
else
self
.
scale
[
self
.
idx_scale
]
n_GPUs
=
min
(
self
.
n_GPUs
,
4
)
_
,
_
,
h
,
w
=
args
[
0
].
size
()
h_half
,
w_half
=
h
//
2
,
w
//
2
h_size
,
w_size
=
h_half
+
shave
,
w_half
+
shave
list_x
=
[[
a
[:,
:,
0
:
h_size
,
0
:
w_size
],
a
[:,
:,
0
:
h_size
,
(
w
-
w_size
):
w
],
a
[:,
:,
(
h
-
h_size
):
h
,
0
:
w_size
],
a
[:,
:,
(
h
-
h_size
):
h
,
(
w
-
w_size
):
w
]
]
for
a
in
args
]
list_y
=
[]
if
w_size
*
h_size
<
min_size
:
# height, width
h
,
w
=
args
[
0
].
size
()[
-
2
:]
top
=
slice
(
0
,
h
//
2
+
shave
)
bottom
=
slice
(
h
-
h
//
2
-
shave
,
h
)
left
=
slice
(
0
,
w
//
2
+
shave
)
right
=
slice
(
w
-
w
//
2
-
shave
,
w
)
x_chops
=
[
torch
.
cat
([
a
[...,
top
,
left
],
a
[...,
top
,
right
],
a
[...,
bottom
,
left
],
a
[...,
bottom
,
right
]
])
for
a
in
args
]
y_chops
=
[]
if
h
*
w
<
4
*
min_size
:
for
i
in
range
(
0
,
4
,
n_GPUs
):
x
=
[
torch
.
cat
(
_x
[
i
:(
i
+
n_GPUs
)]
,
dim
=
0
)
for
_x
in
list_x
]
x
=
[
x_chop
[
i
:(
i
+
n_GPUs
)]
for
x_chop
in
x_chops
]
y
=
self
.
model
(
*
x
)
if
not
isinstance
(
y
,
list
):
y
=
[
y
]
if
not
list_y
:
list_y
=
[[
c
for
c
in
_y
.
chunk
(
n_GPUs
,
dim
=
0
)]
for
_y
in
y
]
if
not
y_chops
:
y_chops
=
[[
c
for
c
in
_y
.
chunk
(
n_GPUs
,
dim
=
0
)]
for
_y
in
y
]
else
:
for
_list_y
,
_y
in
zip
(
list_y
,
y
):
_list_y
.
extend
(
_y
.
chunk
(
n_GPUs
,
dim
=
0
))
for
y_chop
,
_y
in
zip
(
y_chops
,
y
):
y_chop
.
extend
(
_y
.
chunk
(
n_GPUs
,
dim
=
0
))
else
:
for
p
in
zip
(
*
list_x
):
for
p
in
zip
(
*
x_chops
):
y
=
self
.
forward_chop
(
*
p
,
shave
=
shave
,
min_size
=
min_size
)
if
not
isinstance
(
y
,
list
):
y
=
[
y
]
if
not
list_y
:
list_y
=
[[
_y
]
for
_y
in
y
]
if
not
y_chops
:
y_chops
=
[[
_y
]
for
_y
in
y
]
else
:
for
_list_y
,
_y
in
zip
(
list_y
,
y
):
_list_y
.
append
(
_y
)
h
,
w
=
scale
*
h
,
scale
*
w
h_half
,
w_half
=
scale
*
h_half
,
scale
*
w_half
h_size
,
w_size
=
scale
*
h_size
,
scale
*
w_size
shave
*=
scale
b
,
c
,
_
,
_
=
list_y
[
0
][
0
].
size
()
y
=
[
_y
[
0
].
new
(
b
,
c
,
h
,
w
)
for
_y
in
list_y
]
for
_list_y
,
_y
in
zip
(
list_y
,
y
):
_y
[:,
:,
:
h_half
,
:
w_half
]
\
=
_list_y
[
0
][:,
:,
:
h_half
,
:
w_half
]
_y
[:,
:,
:
h_half
,
w_half
:]
\
=
_list_y
[
1
][:,
:,
:
h_half
,
(
w_size
-
w
+
w_half
):]
_y
[:,
:,
h_half
:,
:
w_half
]
\
=
_list_y
[
2
][:,
:,
(
h_size
-
h
+
h_half
):,
:
w_half
]
_y
[:,
:,
h_half
:,
w_half
:]
\
=
_list_y
[
3
][:,
:,
(
h_size
-
h
+
h_half
):,
(
w_size
-
w
+
w_half
):]
for
y_chop
,
_y
in
zip
(
y_chops
,
y
):
y_chop
.
append
(
_y
)
top
=
slice
(
0
,
scale
*
h
//
2
)
bottom
=
slice
(
scale
*
(
h
-
h
//
2
),
scale
*
h
)
bottom_r
=
slice
(
scale
*
(
h
//
2
-
h
),
None
)
left
=
slice
(
0
,
scale
*
w
//
2
)
right
=
slice
(
scale
*
(
w
-
w
//
2
),
scale
*
w
)
right_r
=
slice
(
scale
*
w
//
2
,
None
)
# batch size, number of color channels
b
,
c
=
y_chops
[
0
][
0
].
size
()[:
-
2
]
y
=
[
y_chop
[
0
].
new
(
b
,
c
,
scale
*
h
,
scale
*
w
)
for
y_chop
in
y_chops
]
for
y_chop
,
_y
in
zip
(
y_chops
,
y
):
_y
[...,
top
,
left
]
=
y_chop
[
0
][...,
top
,
left
]
_y
[...,
top
,
right
]
=
y_chop
[
1
][...,
top
,
right_r
]
_y
[...,
bottom
,
left
]
=
y_chop
[
2
][...,
bottom_r
,
left
]
_y
[...,
bottom
,
right
]
=
y_chop
[
3
][...,
bottom_r
,
right_r
]
if
len
(
y
)
==
1
:
y
=
y
[
0
]
...
...
@@ -212,4 +211,3 @@ class Model(nn.Module):
if
len
(
y
)
==
1
:
y
=
y
[
0
]
return
y
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment