Skip to content
Snippets Groups Projects
Commit de6b781a authored by 영제 임's avatar 영제 임
Browse files

중간 수정

parent e7d9d6b3
No related branches found
No related tags found
No related merge requests found
README.md 100755 → 100644
**About PyTorch 1.2.0**
* Now the master branch supports PyTorch 1.2.0 by default.
* Due to the serious version problem (especially torch.utils.data.dataloader), MDSR functions are temporarily disabled. If you have to train/evaluate the MDSR model, please use legacy branches.
**About PyTorch 1.6.0**
* Now the main branch supports PyTorch 1.6.0 by default.
# EDSR-PyTorch
# Attention transfer을 활용한 EDSR-PyTorch모델 경량화
**About PyTorch 1.1.0**
* There have been minor changes with the 1.1.0 update. Now we support PyTorch 1.1.0 by default, and please use the legacy branch if you prefer older version.
**About PyTorch 1.6.0**
* feature map transfer 방식을 위에서 언급한 EDSR에 적용하여 모델 경량화 실험 진행 예정
![](/figs/main.png)
This repository is an official PyTorch implementation of the paper **"Enhanced Deep Residual Networks for Single Image Super-Resolution"** from **CVPRW 2017, 2nd NTIRE**.
You can find the original code and more information from [here](https://github.com/LimBee/NTIRE2017).
![스크린샷_2023-05-03_오후_8.07.38](/uploads/ea0da2b1a3e3b2ae50c7043ca4c7a633/스크린샷_2023-05-03_오후_8.07.38.png)
![그림1](/uploads/70deee4757ab0a0395c4d50ececbb6d6/그림1.png)
If you find our work useful in your research or publication, please cite our work:
This repository는 **"Enhanced Deep Residual Networks for Single Image Super-Resolution"** from **CVPRW 2017, 2nd NTIRE**.[here](https://github.com/LimBee/NTIRE2017) EDSR모델을 **"Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer"** from **ICLR2017: https://openreview.net/forum?id=Sks9_ajex** [here](https://arxiv.org/abs/1612.03928) 방식을 활용하여 모델 경량화를 진행하려고 한다.
<img width="834" alt="스크린샷 2023-05-08 오후 6 35 06" src="https://user-images.githubusercontent.com/90498398/236798239-85baa08e-fd66-49ea-acc2-aa07c482110e.png">
중간 실험 결과
학생 모델과 교사 모델로 부터 지식을 받은 ours 모델은 patch_size=96, n_resblocks=16, epochs=100, batch_size=8으로 진행함.
교사 모델은 patch_size=96, n_resblocks=32, epochs=300, batch_size=16으로 진행함.
[1] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee, **"Enhanced Deep Residual Networks for Single Image Super-Resolution,"** <i>2nd NTIRE: New Trends in Image Restoration and Enhancement workshop and challenge on image super-resolution in conjunction with **CVPR 2017**. </i> [[PDF](http://openaccess.thecvf.com/content_cvpr_2017_workshops/w12/papers/Lim_Enhanced_Deep_Residual_CVPR_2017_paper.pdf)] [[arXiv](https://arxiv.org/abs/1707.02921)] [[Slide](https://cv.snu.ac.kr/research/EDSR/Presentation_v3(release).pptx)]
```
......@@ -23,19 +27,18 @@ If you find our work useful in your research or publication, please cite our wor
month = {July},
year = {2017}
}
@inproceedings{Zagoruyko2017AT,
author = {Sergey Zagoruyko and Nikos Komodakis},
title = {Paying More Attention to Attention: Improving the Performance of
Convolutional Neural Networks via Attention Transfer},
booktitle = {ICLR},
url = {https://arxiv.org/abs/1612.03928},
year = {2017}}
```
We provide scripts for reproducing all the results from our paper. You can train your model from scratch, or use a pre-trained model to enlarge your images.
**Differences between Torch version**
* Codes are much more compact. (Removed all unnecessary parts.)
* Models are smaller. (About half.)
* Slightly better performances.
* Training and evaluation requires less memory.
* Python-based.
## Dependencies
* Python 3.6
* PyTorch >= 1.0.0
* PyTorch >= 1.6.0
* numpy
* skimage
* **imageio**
......@@ -61,24 +64,6 @@ sh demo.sh
You can find the result images from ```experiment/test/results``` folder.
| Model | Scale | File name (.pt) | Parameters | ****PSNR** |
| --- | --- | --- | --- | --- |
| **EDSR** | 2 | EDSR_baseline_x2 | 1.37 M | 34.61 dB |
| | | *EDSR_x2 | 40.7 M | 35.03 dB |
| | 3 | EDSR_baseline_x3 | 1.55 M | 30.92 dB |
| | | *EDSR_x3 | 43.7 M | 31.26 dB |
| | 4 | EDSR_baseline_x4 | 1.52 M | 28.95 dB |
| | | *EDSR_x4 | 43.1 M | 29.25 dB |
| **MDSR** | 2 | MDSR_baseline | 3.23 M | 34.63 dB |
| | | *MDSR | 7.95 M| 34.92 dB |
| | 3 | MDSR_baseline | | 30.94 dB |
| | | *MDSR | | 31.22 dB |
| | 4 | MDSR_baseline | | 28.97 dB |
| | | *MDSR | | 29.24 dB |
*Baseline models are in ``experiment/model``. Please download our final models from [here](https://cv.snu.ac.kr/research/EDSR/model_pytorch.tar) (542MB)
**We measured PSNR using DIV2K 0801 ~ 0900, RGB channels, without self-ensemble. (scale + 2) pixels from the image boundary are ignored.
You can evaluate your models with widely-used benchmark datasets:
[Set5 - Bevilacqua et al. BMVC 2012](http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html),
......@@ -89,98 +74,4 @@ You can evaluate your models with widely-used benchmark datasets:
[Urban100 - Huang et al. CVPR 2015](https://sites.google.com/site/jbhuang0604/publications/struct_sr).
For these datasets, we first convert the result images to YCbCr color space and evaluate PSNR on the Y channel only. You can download [benchmark datasets](https://cv.snu.ac.kr/research/EDSR/benchmark.tar) (250MB). Set ``--dir_data <where_benchmark_folder_located>`` to evaluate the EDSR and MDSR with the benchmarks.
You can download some results from [here](https://cv.snu.ac.kr/research/EDSR/result_image/edsr-results.tar).
The link contains **EDSR+_baseline_x4** and **EDSR+_x4**.
Otherwise, you can easily generate result images with ``demo.sh`` scripts.
## How to train EDSR and MDSR
We used [DIV2K](http://www.vision.ee.ethz.ch/%7Etimofter/publications/Agustsson-CVPRW-2017.pdf) dataset to train our model. Please download it from [here](https://cv.snu.ac.kr/research/EDSR/DIV2K.tar) (7.1GB).
Unpack the tar file to any place you want. Then, change the ```dir_data``` argument in ```src/option.py``` to the place where DIV2K images are located.
We recommend you to pre-process the images before training. This step will decode all **png** files and save them as binaries. Use ``--ext sep_reset`` argument on your first run. You can skip the decoding part and use saved binaries with ``--ext sep`` argument.
If you have enough RAM (>= 32GB), you can use ``--ext bin`` argument to pack all DIV2K images in one binary file.
You can train EDSR and MDSR by yourself. All scripts are provided in the ``src/demo.sh``. Note that EDSR (x3, x4) requires pre-trained EDSR (x2). You can ignore this constraint by removing ```--pre_train <x2 model>``` argument.
```bash
cd src # You are now in */EDSR-PyTorch/src
sh demo.sh
```
**Update log**
* Jan 04, 2018
* Many parts are re-written. You cannot use previous scripts and models directly.
* Pre-trained MDSR is temporarily disabled.
* Training details are included.
* Jan 09, 2018
* Missing files are included (```src/data/MyImage.py```).
* Some links are fixed.
* Jan 16, 2018
* Memory efficient forward function is implemented.
* Add --chop_forward argument to your script to enable it.
* Basically, this function first split a large image to small patches. Those images are merged after super-resolution. I checked this function with 12GB memory, 4000 x 2000 input image in scale 4. (Therefore, the output will be 16000 x 8000.)
* Feb 21, 2018
* Fixed the problem when loading pre-trained multi-GPU model.
* Added pre-trained scale 2 baseline model.
* This code now only saves the best-performing model by default. For MDSR, 'the best' can be ambiguous. Use --save_models argument to keep all the intermediate models.
* PyTorch 0.3.1 changed their implementation of DataLoader function. Therefore, I also changed my implementation of MSDataLoader. You can find it on feature/dataloader branch.
* Feb 23, 2018
* Now PyTorch 0.3.1 is a default. Use legacy/0.3.0 branch if you use the old version.
* With a new ``src/data/DIV2K.py`` code, one can easily create new data class for super-resolution.
* New binary data pack. (Please remove the ``DIV2K_decoded`` folder from your dataset if you have.)
* With ``--ext bin``, this code will automatically generate and saves the binary data pack that corresponds to previous ``DIV2K_decoded``. (This requires huge RAM (~45GB, Swap can be used.), so please be careful.)
* If you cannot make the binary pack, use the default setting (``--ext img``).
* Fixed a bug that PSNR in the log and PSNR calculated from the saved images does not match.
* Now saved images have better quality! (PSNR is ~0.1dB higher than the original code.)
* Added performance comparison between Torch7 model and PyTorch models.
* Mar 5, 2018
* All baseline models are uploaded.
* Now supports half-precision at test time. Use ``--precision half`` to enable it. This does not degrade the output images.
* Mar 11, 2018
* Fixed some typos in the code and script.
* Now --ext img is default setting. Although we recommend you to use --ext bin when training, please use --ext img when you use --test_only.
* Skip_batch operation is implemented. Use --skip_threshold argument to skip the batch that you want to ignore. Although this function is not exactly the same with that of Torch7 version, it will work as you expected.
* Mar 20, 2018
* Use ``--ext sep-reset`` to pre-decode large png files. Those decoded files will be saved to the same directory with DIV2K png files. After the first run, you can use ``--ext sep`` to save time.
* Now supports various benchmark datasets. For example, try ``--data_test Set5`` to test your model on the Set5 images.
* Changed the behavior of skip_batch.
* Mar 29, 2018
* We now provide all models from our paper.
* We also provide ``MDSR_baseline_jpeg`` model that suppresses JPEG artifacts in the original low-resolution image. Please use it if you have any trouble.
* ``MyImage`` dataset is changed to ``Demo`` dataset. Also, it works more efficient than before.
* Some codes and script are re-written.
* Apr 9, 2018
* VGG and Adversarial loss is implemented based on [SRGAN](http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf). [WGAN](https://arxiv.org/abs/1701.07875) and [gradient penalty](https://arxiv.org/abs/1704.00028) are also implemented, but they are not tested yet.
* Many codes are refactored. If there exists a bug, please report it.
* [D-DBPN](https://arxiv.org/abs/1803.02735) is implemented. The default setting is D-DBPN-L.
* Apr 26, 2018
* Compatible with PyTorch 0.4.0
* Please use the legacy/0.3.1 branch if you are using the old version of PyTorch.
* Minor bug fixes
* July 22, 2018
* Thanks for recent commits that contains RDN and RCAN. Please see ``code/demo.sh`` to train/test those models.
* Now the dataloader is much stable than the previous version. Please erase ``DIV2K/bin`` folder that is created before this commit. Also, please avoid using ``--ext bin`` argument. Our code will automatically pre-decode png images before training. If you do not have enough spaces(~10GB) in your disk, we recommend ``--ext img``(But SLOW!).
* Oct 18, 2018
* with ``--pre_train download``, pretrained models will be automatically downloaded from the server.
* Supports video input/output (inference only). Try with ``--data_test video --dir_demo [video file directory]``.
* About PyTorch 1.0.0
* We support PyTorch 1.0.0. If you prefer the previous versions of PyTorch, use legacy branches.
* ``--ext bin`` is not supported. Also, please erase your bin files with ``--ext sep-reset``. Once you successfully build those bin files, you can remove ``-reset`` from the argument.
......@@ -48,10 +48,10 @@ class Trainer():
self.optimizer.zero_grad()
res, sr = self.model(lr, 0)
with torch.no_grad():
#with torch.no_grad():
t_res, _ = self.t_model(lr, 0)
kd_loss = self.KD_loss(res, t_res)
loss = self.loss(sr, hr) + 0.1*kd_loss
loss = self.loss(sr, hr) + kd_loss
loss.backward()
if self.args.gclip > 0:
utils.clip_grad_value_(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment