Skip to content
Snippets Groups Projects
option.py 7.33 KiB
Newer Older
  • Learn to ignore specific revisions
  • 영제 임's avatar
    영제 임 committed
    import argparse
    import template
    
    parser = argparse.ArgumentParser(description='EDSR and MDSR')
    
    parser.add_argument('--debug', action='store_true',
                        help='Enables debug mode')
    parser.add_argument('--template', default='.',
                        help='You can set various templates in option.py')
    
    # Hardware specifications
    parser.add_argument('--n_threads', type=int, default=6,
                        help='number of threads for data loading')
    parser.add_argument('--cpu', action='store_true',
                        help='use cpu only')
    parser.add_argument('--n_GPUs', type=int, default=1,
                        help='number of GPUs')
    parser.add_argument('--seed', type=int, default=1,
                        help='random seed')
    
    # Data specifications
    parser.add_argument('--dir_data', type=str, default='/home/iyj0121/EDSR-PyTorch/dataset',
                        help='dataset directory')
    parser.add_argument('--dir_demo', type=str, default='../test',
                        help='demo image directory')
    parser.add_argument('--data_train', type=str, default='DIV2K',
                        help='train dataset name')
    parser.add_argument('--data_test', type=str, default='DIV2K',
                        help='test dataset name')
    parser.add_argument('--data_range', type=str, default='1-800/801-810',
                        help='train/test data range')
    parser.add_argument('--ext', type=str, default='sep',
                        help='dataset file extension')
    parser.add_argument('--scale', type=str, default='4',
                        help='super resolution scale')
    parser.add_argument('--patch_size', type=int, default=192,
                        help='output patch size')
    parser.add_argument('--rgb_range', type=int, default=255,
                        help='maximum value of RGB')
    parser.add_argument('--n_colors', type=int, default=3,
                        help='number of color channels to use')
    parser.add_argument('--chop', action='store_true',
                        help='enable memory-efficient forward')
    parser.add_argument('--no_augment', action='store_true',
                        help='do not use data augmentation')
    
    # Model specifications
    parser.add_argument('--model', default='EDSR',
                        help='model name')
    
    parser.add_argument('--act', type=str, default='relu',
                        help='activation function')
    parser.add_argument('--pre_train', type=str, default='',
                        help='pre-trained model directory')
    parser.add_argument('--extend', type=str, default='.',
                        help='pre-trained model directory')
    parser.add_argument('--n_resblocks', type=int, default=16,
                        help='number of residual blocks')
    parser.add_argument('--n_feats', type=int, default=64,
                        help='number of feature maps')
    parser.add_argument('--res_scale', type=float, default=1,
                        help='residual scaling')
    parser.add_argument('--shift_mean', default=True,
                        help='subtract pixel mean from the input')
    parser.add_argument('--dilation', action='store_true',
                        help='use dilated convolution')
    parser.add_argument('--precision', type=str, default='single',
                        choices=('single', 'half'),
                        help='FP precision for test (single | half)')
    
    # Option for Residual dense network (RDN)
    parser.add_argument('--G0', type=int, default=64,
                        help='default number of filters. (Use in RDN)')
    parser.add_argument('--RDNkSize', type=int, default=3,
                        help='default kernel size. (Use in RDN)')
    parser.add_argument('--RDNconfig', type=str, default='B',
                        help='parameters config of RDN. (Use in RDN)')
    
    # Option for Residual channel attention network (RCAN)
    parser.add_argument('--n_resgroups', type=int, default=10,
                        help='number of residual groups')
    parser.add_argument('--reduction', type=int, default=16,
                        help='number of feature maps reduction')
    
    # Training specifications
    parser.add_argument('--reset', action='store_true',
                        help='reset the training')
    parser.add_argument('--test_every', type=int, default=1000,
                        help='do test per every N batches')
    parser.add_argument('--epochs', type=int, default=300,
                        help='number of epochs to train')
    parser.add_argument('--batch_size', type=int, default=16,
                        help='input batch size for training')
    parser.add_argument('--split_batch', type=int, default=1,
                        help='split the batch into smaller chunks')
    parser.add_argument('--self_ensemble', action='store_true',
                        help='use self-ensemble method for test')
    parser.add_argument('--test_only', action='store_true',
                        help='set this option to test the model')
    parser.add_argument('--gan_k', type=int, default=1,
                        help='k value for adversarial loss')
    
    # Optimization specifications
    parser.add_argument('--lr', type=float, default=1e-4,
                        help='learning rate')
    parser.add_argument('--decay', type=str, default='200',
                        help='learning rate decay type')
    parser.add_argument('--gamma', type=float, default=0.5,
                        help='learning rate decay factor for step decay')
    parser.add_argument('--optimizer', default='ADAM',
                        choices=('SGD', 'ADAM', 'RMSprop'),
                        help='optimizer to use (SGD | ADAM | RMSprop)')
    parser.add_argument('--momentum', type=float, default=0.9,
                        help='SGD momentum')
    parser.add_argument('--betas', type=tuple, default=(0.9, 0.999),
                        help='ADAM beta')
    parser.add_argument('--epsilon', type=float, default=1e-8,
                        help='ADAM epsilon for numerical stability')
    parser.add_argument('--weight_decay', type=float, default=0,
                        help='weight decay')
    parser.add_argument('--gclip', type=float, default=0,
                        help='gradient clipping threshold (0 = no clipping)')
    
    # Loss specifications
    parser.add_argument('--loss', type=str, default='1*L1',
                        help='loss function configuration')
    parser.add_argument('--skip_threshold', type=float, default='1e8',
                        help='skipping batch that has large error')
    
    # Log specifications
    parser.add_argument('--save', type=str, default='test',
                        help='file name to save')
    parser.add_argument('--load', type=str, default='',
                        help='file name to load')
    parser.add_argument('--resume', type=int, default=0,
                        help='resume from specific checkpoint')
    parser.add_argument('--save_models', action='store_true',
                        help='save all intermediate models')
    parser.add_argument('--print_every', type=int, default=100,
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save_results', action='store_true',
                        help='save output results')
    parser.add_argument('--save_gt', action='store_true',
                        help='save low-resolution and high-resolution images together')
    
    args = parser.parse_args()
    template.set_template(args)
    
    args.scale = list(map(lambda x: int(x), args.scale.split('+')))
    args.data_train = args.data_train.split('+')
    args.data_test = args.data_test.split('+')
    
    if args.epochs == 0:
        args.epochs = 1e8
    
    for arg in vars(args):
        if vars(args)[arg] == 'True':
            vars(args)[arg] = True
        elif vars(args)[arg] == 'False':
            vars(args)[arg] = False