Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
F
Final_Project_OPEN_SW
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Young Woo Kim
Final_Project_OPEN_SW
Commits
bea5ba07
Commit
bea5ba07
authored
4 years ago
by
Young Woo Kim
Browse files
Options
Downloads
Patches
Plain Diff
Update README.md
parent
8600f6ef
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
README.md
+690
-1
690 additions, 1 deletion
README.md
with
690 additions
and
1 deletion
README.md
+
690
−
1
View file @
bea5ba07
...
@@ -630,3 +630,692 @@ print (np.sort(arr1)[::-1])
...
@@ -630,3 +630,692 @@ print (np.sort(arr1)[::-1])
``
`
``
`
# Pandas 배워보기
# Pandas 배워보기
```
python
import pandas as pd
import numpy as np
```
```
python
data = {'name': ['YoungWoo', 'DomgHo', 'Minsu', 'Hong', 'Kwangsung'],
'year': [2013, 2014, 2015, 2016, 2015],
'points': [1.5, 1.7, 3.6, 2.4, 2.9]}
df = pd.DataFrame(data)
print (df)
```
name year points
0 YoungWoo 2013 1.5
1 DomgHo 2014 1.7
2 Minsu 2015 3.6
3 Hong 2016 2.4
4 Kwangsung 2015 2.9
```
python
df
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>year</th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>YoungWoo</td>
<td>2013</td>
<td>1.5</td>
</tr>
<tr>
<th>1</th>
<td>DomgHo</td>
<td>2014</td>
<td>1.7</td>
</tr>
<tr>
<th>2</th>
<td>Minsu</td>
<td>2015</td>
<td>3.6</td>
</tr>
<tr>
<th>3</th>
<td>Hong</td>
<td>2016</td>
<td>2.4</td>
</tr>
<tr>
<th>4</th>
<td>Kwangsung</td>
<td>2015</td>
<td>2.9</td>
</tr>
</tbody>
</table>
</div>
```
python
csv = pd.read_csv('C:/Users/김영우/jupyter/example.csv')
csv
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>ID</th>
<th>NAME</th>
<th>나이</th>
<th>점수</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>1</td>
<td>Kim</td>
<td>23</td>
<td>75</td>
</tr>
<tr>
<th>1</th>
<td>2</td>
<td>Lee</td>
<td>19</td>
<td>80</td>
</tr>
<tr>
<th>2</th>
<td>3</td>
<td>Choi</td>
<td>20</td>
<td>59</td>
</tr>
<tr>
<th>3</th>
<td>4</td>
<td>Song</td>
<td>23</td>
<td>90</td>
</tr>
<tr>
<th>4</th>
<td>5</td>
<td>Hwang</td>
<td>25</td>
<td>83</td>
</tr>
</tbody>
</table>
</div>
```
python
print (df.columns)
print (csv.columns)
```
Index(['name', 'year', 'points'], dtype='object')
Index(['ID', 'NAME', '나이', '점수'], dtype='object')
```
python
print (df.values)
print (csv.values)
```
[['YoungWoo' 2013 1.5]
['DomgHo' 2014 1.7]
['Minsu' 2015 3.6]
['Hong' 2016 2.4]
['Kwangsung' 2015 2.9]]
[[1 'Kim' 23 75]
[2 'Lee' 19 80]
[3 'Choi' 20 59]
[4 'Song' 23 90]
[5 'Hwang' 25 83]]
```
python
df.describe()
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>year</th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<th>count</th>
<td>5.000000</td>
<td>5.000000</td>
</tr>
<tr>
<th>mean</th>
<td>2014.600000</td>
<td>2.420000</td>
</tr>
<tr>
<th>std</th>
<td>1.140175</td>
<td>0.864292</td>
</tr>
<tr>
<th>min</th>
<td>2013.000000</td>
<td>1.500000</td>
</tr>
<tr>
<th>25%</th>
<td>2014.000000</td>
<td>1.700000</td>
</tr>
<tr>
<th>50%</th>
<td>2015.000000</td>
<td>2.400000</td>
</tr>
<tr>
<th>75%</th>
<td>2015.000000</td>
<td>2.900000</td>
</tr>
<tr>
<th>max</th>
<td>2016.000000</td>
<td>3.600000</td>
</tr>
</tbody>
</table>
</div>
```
python
csv.describe()
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>ID</th>
<th>나이</th>
<th>점수</th>
</tr>
</thead>
<tbody>
<tr>
<th>count</th>
<td>5.000000</td>
<td>5.00000</td>
<td>5.000000</td>
</tr>
<tr>
<th>mean</th>
<td>3.000000</td>
<td>22.00000</td>
<td>77.400000</td>
</tr>
<tr>
<th>std</th>
<td>1.581139</td>
<td>2.44949</td>
<td>11.631853</td>
</tr>
<tr>
<th>min</th>
<td>1.000000</td>
<td>19.00000</td>
<td>59.000000</td>
</tr>
<tr>
<th>25%</th>
<td>2.000000</td>
<td>20.00000</td>
<td>75.000000</td>
</tr>
<tr>
<th>50%</th>
<td>3.000000</td>
<td>23.00000</td>
<td>80.000000</td>
</tr>
<tr>
<th>75%</th>
<td>4.000000</td>
<td>23.00000</td>
<td>83.000000</td>
</tr>
<tr>
<th>max</th>
<td>5.000000</td>
<td>25.00000</td>
<td>90.000000</td>
</tr>
</tbody>
</table>
</div>
```
python
df['zero'] = np.zeros(5)
df
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>year</th>
<th>points</th>
<th>zero</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>YoungWoo</td>
<td>2013</td>
<td>1.5</td>
<td>0.0</td>
</tr>
<tr>
<th>1</th>
<td>DomgHo</td>
<td>2014</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<th>2</th>
<td>Minsu</td>
<td>2015</td>
<td>3.6</td>
<td>0.0</td>
</tr>
<tr>
<th>3</th>
<td>Hong</td>
<td>2016</td>
<td>2.4</td>
<td>0.0</td>
</tr>
<tr>
<th>4</th>
<td>Kwangsung</td>
<td>2015</td>
<td>2.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>
</div>
```
python
csv['random'] = np.random.rand(5)
csv['random']
*
= 10
csv
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>ID</th>
<th>NAME</th>
<th>나이</th>
<th>점수</th>
<th>random</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>1</td>
<td>Kim</td>
<td>23</td>
<td>75</td>
<td>1.859625</td>
</tr>
<tr>
<th>1</th>
<td>2</td>
<td>Lee</td>
<td>19</td>
<td>80</td>
<td>0.588391</td>
</tr>
<tr>
<th>2</th>
<td>3</td>
<td>Choi</td>
<td>20</td>
<td>59</td>
<td>8.702442</td>
</tr>
<tr>
<th>3</th>
<td>4</td>
<td>Song</td>
<td>23</td>
<td>90</td>
<td>7.638486</td>
</tr>
<tr>
<th>4</th>
<td>5</td>
<td>Hwang</td>
<td>25</td>
<td>83</td>
<td>9.592227</td>
</tr>
</tbody>
</table>
</div>
```
python
del df['zero']
df
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>year</th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>YoungWoo</td>
<td>2013</td>
<td>1.5</td>
</tr>
<tr>
<th>1</th>
<td>DomgHo</td>
<td>2014</td>
<td>1.7</td>
</tr>
<tr>
<th>2</th>
<td>Minsu</td>
<td>2015</td>
<td>3.6</td>
</tr>
<tr>
<th>3</th>
<td>Hong</td>
<td>2016</td>
<td>2.4</td>
</tr>
<tr>
<th>4</th>
<td>Kwangsung</td>
<td>2015</td>
<td>2.9</td>
</tr>
</tbody>
</table>
</div>
```
python
val = pd.Series([10, 20, 30, 40, 50])
df['tens'] = val
df
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>year</th>
<th>points</th>
<th>tens</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>YoungWoo</td>
<td>2013</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<th>1</th>
<td>DomgHo</td>
<td>2014</td>
<td>1.7</td>
<td>20</td>
</tr>
<tr>
<th>2</th>
<td>Minsu</td>
<td>2015</td>
<td>3.6</td>
<td>30</td>
</tr>
<tr>
<th>3</th>
<td>Hong</td>
<td>2016</td>
<td>2.4</td>
<td>40</td>
</tr>
<tr>
<th>4</th>
<td>Kwangsung</td>
<td>2015</td>
<td>2.9</td>
<td>50</td>
</tr>
</tbody>
</table>
</div>
```
python
print (df.sum(axis = 0))
print (df.sum(axis = 1))
print (df.min(axis = 0))
```
name YoungWooDomgHoMinsuHongKwangsung
year 10073
points 12.1
tens 150
dtype: object
0 2024.5
1 2035.7
2 2048.6
3 2058.4
4 2067.9
dtype: float64
name DomgHo
year 2013
points 1.5
tens 10
dtype: object
```
python
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment