Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
I
it집중교육2_project
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Smart_ventilation_system
it집중교육2_project
Commits
1fe06e82
Commit
1fe06e82
authored
2 years ago
by
park beom su
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
d431cd9e
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
model.py
+239
-0
239 additions, 0 deletions
model.py
with
239 additions
and
0 deletions
model.py
0 → 100644
+
239
−
0
View file @
1fe06e82
from
tensorflow
import
keras
import
tensorflow
as
tf
class
FastSRGAN
(
object
):
"""
SRGAN for fast super resolution.
"""
def
__init__
(
self
,
args
):
"""
Initializes the Mobile SRGAN class.
Args:
args: CLI arguments that dictate how to build the model.
Returns:
None
"""
self
.
hr_height
=
args
.
hr_size
self
.
hr_width
=
args
.
hr_size
self
.
lr_height
=
self
.
hr_height
//
4
# Low resolution height
self
.
lr_width
=
self
.
hr_width
//
4
# Low resolution width
self
.
lr_shape
=
(
self
.
lr_height
,
self
.
lr_width
,
3
)
self
.
hr_shape
=
(
self
.
hr_height
,
self
.
hr_width
,
3
)
self
.
iterations
=
0
# Number of inverted residual blocks in the mobilenet generator
self
.
n_residual_blocks
=
6
# Define a learning rate decay schedule.
self
.
gen_schedule
=
keras
.
optimizers
.
schedules
.
ExponentialDecay
(
args
.
lr
,
decay_steps
=
100000
,
decay_rate
=
0.1
,
staircase
=
True
)
self
.
disc_schedule
=
keras
.
optimizers
.
schedules
.
ExponentialDecay
(
args
.
lr
*
5
,
# TTUR - Two Time Scale Updates
decay_steps
=
100000
,
decay_rate
=
0.1
,
staircase
=
True
)
self
.
gen_optimizer
=
keras
.
optimizers
.
Adam
(
learning_rate
=
self
.
gen_schedule
)
self
.
disc_optimizer
=
keras
.
optimizers
.
Adam
(
learning_rate
=
self
.
disc_schedule
)
# We use a pre-trained VGG19 model to extract image features from the high resolution
# and the generated high resolution images and minimize the mse between them
self
.
vgg
=
self
.
build_vgg
()
self
.
vgg
.
trainable
=
False
# Calculate output shape of D (PatchGAN)
patch
=
int
(
self
.
hr_height
/
2
**
4
)
self
.
disc_patch
=
(
patch
,
patch
,
1
)
# Number of filters in the first layer of G and D
self
.
gf
=
32
# Realtime Image Enhancement GAN Galteri et al.
self
.
df
=
32
# Build and compile the discriminator
self
.
discriminator
=
self
.
build_discriminator
()
# Build and compile the generator for pretraining.
self
.
generator
=
self
.
build_generator
()
@tf.function
def
content_loss
(
self
,
hr
,
sr
):
sr
=
keras
.
applications
.
vgg19
.
preprocess_input
(((
sr
+
1.0
)
*
255
)
/
2.0
)
hr
=
keras
.
applications
.
vgg19
.
preprocess_input
(((
hr
+
1.0
)
*
255
)
/
2.0
)
sr_features
=
self
.
vgg
(
sr
)
/
12.75
hr_features
=
self
.
vgg
(
hr
)
/
12.75
return
tf
.
keras
.
losses
.
MeanSquaredError
()(
hr_features
,
sr_features
)
def
build_vgg
(
self
):
"""
Builds a pre-trained VGG19 model that outputs image features extracted at the
third block of the model
"""
# Get the vgg network. Extract features from Block 5, last convolution.
vgg
=
keras
.
applications
.
VGG19
(
weights
=
"
imagenet
"
,
input_shape
=
self
.
hr_shape
,
include_top
=
False
)
vgg
.
trainable
=
False
for
layer
in
vgg
.
layers
:
layer
.
trainable
=
False
# Create model and compile
model
=
keras
.
models
.
Model
(
inputs
=
vgg
.
input
,
outputs
=
vgg
.
get_layer
(
"
block5_conv4
"
).
output
)
return
model
def
build_generator
(
self
):
"""
Build the generator that will do the Super Resolution task.
Based on the Mobilenet design. Idea from Galteri et al.
"""
def
_make_divisible
(
v
,
divisor
,
min_value
=
None
):
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
# Make sure that round down does not go down by more than 10%.
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
def
residual_block
(
inputs
,
filters
,
block_id
,
expansion
=
6
,
stride
=
1
,
alpha
=
1.0
):
"""
Inverted Residual block that uses depth wise convolutions for parameter efficiency.
Args:
inputs: The input feature map.
filters: Number of filters in each convolution in the block.
block_id: An integer specifier for the id of the block in the graph.
expansion: Channel expansion factor.
stride: The stride of the convolution.
alpha: Depth expansion factor.
Returns:
x: The output of the inverted residual block.
"""
channel_axis
=
1
if
keras
.
backend
.
image_data_format
()
==
'
channels_first
'
else
-
1
in_channels
=
keras
.
backend
.
int_shape
(
inputs
)[
channel_axis
]
pointwise_conv_filters
=
int
(
filters
*
alpha
)
pointwise_filters
=
_make_divisible
(
pointwise_conv_filters
,
8
)
x
=
inputs
prefix
=
'
block_{}_
'
.
format
(
block_id
)
if
block_id
:
# Expand
x
=
keras
.
layers
.
Conv2D
(
expansion
*
in_channels
,
kernel_size
=
1
,
padding
=
'
same
'
,
use_bias
=
True
,
activation
=
None
,
name
=
prefix
+
'
expand
'
)(
x
)
x
=
keras
.
layers
.
BatchNormalization
(
axis
=
channel_axis
,
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
prefix
+
'
expand_BN
'
)(
x
)
x
=
keras
.
layers
.
Activation
(
'
relu
'
,
name
=
prefix
+
'
expand_relu
'
)(
x
)
else
:
prefix
=
'
expanded_conv_
'
# Depthwise
x
=
keras
.
layers
.
DepthwiseConv2D
(
kernel_size
=
3
,
strides
=
stride
,
activation
=
None
,
use_bias
=
True
,
padding
=
'
same
'
if
stride
==
1
else
'
valid
'
,
name
=
prefix
+
'
depthwise
'
)(
x
)
x
=
keras
.
layers
.
BatchNormalization
(
axis
=
channel_axis
,
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
prefix
+
'
depthwise_BN
'
)(
x
)
x
=
keras
.
layers
.
Activation
(
'
relu
'
,
name
=
prefix
+
'
depthwise_relu
'
)(
x
)
# Project
x
=
keras
.
layers
.
Conv2D
(
pointwise_filters
,
kernel_size
=
1
,
padding
=
'
same
'
,
use_bias
=
True
,
activation
=
None
,
name
=
prefix
+
'
project
'
)(
x
)
x
=
keras
.
layers
.
BatchNormalization
(
axis
=
channel_axis
,
epsilon
=
1e-3
,
momentum
=
0.999
,
name
=
prefix
+
'
project_BN
'
)(
x
)
if
in_channels
==
pointwise_filters
and
stride
==
1
:
return
keras
.
layers
.
Add
(
name
=
prefix
+
'
add
'
)([
inputs
,
x
])
return
x
def
deconv2d
(
layer_input
):
"""
Upsampling layer to increase height and width of the input.
Uses PixelShuffle for upsampling.
Args:
layer_input: The input tensor to upsample.
Returns:
u: Upsampled input by a factor of 2.
"""
u
=
keras
.
layers
.
UpSampling2D
(
size
=
2
,
interpolation
=
'
bilinear
'
)(
layer_input
)
u
=
keras
.
layers
.
Conv2D
(
self
.
gf
,
kernel_size
=
3
,
strides
=
1
,
padding
=
'
same
'
)(
u
)
u
=
keras
.
layers
.
PReLU
(
shared_axes
=
[
1
,
2
])(
u
)
return
u
# Low resolution image input
img_lr
=
keras
.
Input
(
shape
=
self
.
lr_shape
)
# Pre-residual block
c1
=
keras
.
layers
.
Conv2D
(
self
.
gf
,
kernel_size
=
3
,
strides
=
1
,
padding
=
'
same
'
)(
img_lr
)
c1
=
keras
.
layers
.
BatchNormalization
()(
c1
)
c1
=
keras
.
layers
.
PReLU
(
shared_axes
=
[
1
,
2
])(
c1
)
# Propogate through residual blocks
r
=
residual_block
(
c1
,
self
.
gf
,
0
)
for
idx
in
range
(
1
,
self
.
n_residual_blocks
):
r
=
residual_block
(
r
,
self
.
gf
,
idx
)
# Post-residual block
c2
=
keras
.
layers
.
Conv2D
(
self
.
gf
,
kernel_size
=
3
,
strides
=
1
,
padding
=
'
same
'
)(
r
)
c2
=
keras
.
layers
.
BatchNormalization
()(
c2
)
c2
=
keras
.
layers
.
Add
()([
c2
,
c1
])
# Upsampling
u1
=
deconv2d
(
c2
)
u2
=
deconv2d
(
u1
)
# Generate high resolution output
gen_hr
=
keras
.
layers
.
Conv2D
(
3
,
kernel_size
=
3
,
strides
=
1
,
padding
=
'
same
'
,
activation
=
'
tanh
'
)(
u2
)
return
keras
.
models
.
Model
(
img_lr
,
gen_hr
)
def
build_discriminator
(
self
):
"""
Builds a discriminator network based on the SRGAN design.
"""
def
d_block
(
layer_input
,
filters
,
strides
=
1
,
bn
=
True
):
"""
Discriminator layer block.
Args:
layer_input: Input feature map for the convolutional block.
filters: Number of filters in the convolution.
strides: The stride of the convolution.
bn: Whether to use batch norm or not.
"""
d
=
keras
.
layers
.
Conv2D
(
filters
,
kernel_size
=
3
,
strides
=
strides
,
padding
=
'
same
'
)(
layer_input
)
if
bn
:
d
=
keras
.
layers
.
BatchNormalization
(
momentum
=
0.8
)(
d
)
d
=
keras
.
layers
.
LeakyReLU
(
alpha
=
0.2
)(
d
)
return
d
# Input img
d0
=
keras
.
layers
.
Input
(
shape
=
self
.
hr_shape
)
d1
=
d_block
(
d0
,
self
.
df
,
bn
=
False
)
d2
=
d_block
(
d1
,
self
.
df
,
strides
=
2
)
d3
=
d_block
(
d2
,
self
.
df
)
d4
=
d_block
(
d3
,
self
.
df
,
strides
=
2
)
d5
=
d_block
(
d4
,
self
.
df
*
2
)
d6
=
d_block
(
d5
,
self
.
df
*
2
,
strides
=
2
)
d7
=
d_block
(
d6
,
self
.
df
*
2
)
d8
=
d_block
(
d7
,
self
.
df
*
2
,
strides
=
2
)
validity
=
keras
.
layers
.
Conv2D
(
1
,
kernel_size
=
1
,
strides
=
1
,
activation
=
'
sigmoid
'
,
padding
=
'
same
'
)(
d8
)
return
keras
.
models
.
Model
(
d0
,
validity
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment