Skip to content
Snippets Groups Projects
Commit 1fe06e82 authored by park beom su's avatar park beom su
Browse files

Upload New File

parent d431cd9e
No related branches found
No related tags found
No related merge requests found
model.py 0 → 100644
from tensorflow import keras
import tensorflow as tf
class FastSRGAN(object):
"""SRGAN for fast super resolution."""
def __init__(self, args):
"""
Initializes the Mobile SRGAN class.
Args:
args: CLI arguments that dictate how to build the model.
Returns:
None
"""
self.hr_height = args.hr_size
self.hr_width = args.hr_size
self.lr_height = self.hr_height // 4 # Low resolution height
self.lr_width = self.hr_width // 4 # Low resolution width
self.lr_shape = (self.lr_height, self.lr_width, 3)
self.hr_shape = (self.hr_height, self.hr_width, 3)
self.iterations = 0
# Number of inverted residual blocks in the mobilenet generator
self.n_residual_blocks = 6
# Define a learning rate decay schedule.
self.gen_schedule = keras.optimizers.schedules.ExponentialDecay(
args.lr,
decay_steps=100000,
decay_rate=0.1,
staircase=True
)
self.disc_schedule = keras.optimizers.schedules.ExponentialDecay(
args.lr * 5, # TTUR - Two Time Scale Updates
decay_steps=100000,
decay_rate=0.1,
staircase=True
)
self.gen_optimizer = keras.optimizers.Adam(learning_rate=self.gen_schedule)
self.disc_optimizer = keras.optimizers.Adam(learning_rate=self.disc_schedule)
# We use a pre-trained VGG19 model to extract image features from the high resolution
# and the generated high resolution images and minimize the mse between them
self.vgg = self.build_vgg()
self.vgg.trainable = False
# Calculate output shape of D (PatchGAN)
patch = int(self.hr_height / 2 ** 4)
self.disc_patch = (patch, patch, 1)
# Number of filters in the first layer of G and D
self.gf = 32 # Realtime Image Enhancement GAN Galteri et al.
self.df = 32
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
# Build and compile the generator for pretraining.
self.generator = self.build_generator()
@tf.function
def content_loss(self, hr, sr):
sr = keras.applications.vgg19.preprocess_input(((sr + 1.0) * 255) / 2.0)
hr = keras.applications.vgg19.preprocess_input(((hr + 1.0) * 255) / 2.0)
sr_features = self.vgg(sr) / 12.75
hr_features = self.vgg(hr) / 12.75
return tf.keras.losses.MeanSquaredError()(hr_features, sr_features)
def build_vgg(self):
"""
Builds a pre-trained VGG19 model that outputs image features extracted at the
third block of the model
"""
# Get the vgg network. Extract features from Block 5, last convolution.
vgg = keras.applications.VGG19(weights="imagenet", input_shape=self.hr_shape, include_top=False)
vgg.trainable = False
for layer in vgg.layers:
layer.trainable = False
# Create model and compile
model = keras.models.Model(inputs=vgg.input, outputs=vgg.get_layer("block5_conv4").output)
return model
def build_generator(self):
"""Build the generator that will do the Super Resolution task.
Based on the Mobilenet design. Idea from Galteri et al."""
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def residual_block(inputs, filters, block_id, expansion=6, stride=1, alpha=1.0):
"""Inverted Residual block that uses depth wise convolutions for parameter efficiency.
Args:
inputs: The input feature map.
filters: Number of filters in each convolution in the block.
block_id: An integer specifier for the id of the block in the graph.
expansion: Channel expansion factor.
stride: The stride of the convolution.
alpha: Depth expansion factor.
Returns:
x: The output of the inverted residual block.
"""
channel_axis = 1 if keras.backend.image_data_format() == 'channels_first' else -1
in_channels = keras.backend.int_shape(inputs)[channel_axis]
pointwise_conv_filters = int(filters * alpha)
pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
x = inputs
prefix = 'block_{}_'.format(block_id)
if block_id:
# Expand
x = keras.layers.Conv2D(expansion * in_channels,
kernel_size=1,
padding='same',
use_bias=True,
activation=None,
name=prefix + 'expand')(x)
x = keras.layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name=prefix + 'expand_BN')(x)
x = keras.layers.Activation('relu', name=prefix + 'expand_relu')(x)
else:
prefix = 'expanded_conv_'
# Depthwise
x = keras.layers.DepthwiseConv2D(kernel_size=3,
strides=stride,
activation=None,
use_bias=True,
padding='same' if stride == 1 else 'valid',
name=prefix + 'depthwise')(x)
x = keras.layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name=prefix + 'depthwise_BN')(x)
x = keras.layers.Activation('relu', name=prefix + 'depthwise_relu')(x)
# Project
x = keras.layers.Conv2D(pointwise_filters,
kernel_size=1,
padding='same',
use_bias=True,
activation=None,
name=prefix + 'project')(x)
x = keras.layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name=prefix + 'project_BN')(x)
if in_channels == pointwise_filters and stride == 1:
return keras.layers.Add(name=prefix + 'add')([inputs, x])
return x
def deconv2d(layer_input):
"""Upsampling layer to increase height and width of the input.
Uses PixelShuffle for upsampling.
Args:
layer_input: The input tensor to upsample.
Returns:
u: Upsampled input by a factor of 2.
"""
u = keras.layers.UpSampling2D(size=2, interpolation='bilinear')(layer_input)
u = keras.layers.Conv2D(self.gf, kernel_size=3, strides=1, padding='same')(u)
u = keras.layers.PReLU(shared_axes=[1, 2])(u)
return u
# Low resolution image input
img_lr = keras.Input(shape=self.lr_shape)
# Pre-residual block
c1 = keras.layers.Conv2D(self.gf, kernel_size=3, strides=1, padding='same')(img_lr)
c1 = keras.layers.BatchNormalization()(c1)
c1 = keras.layers.PReLU(shared_axes=[1, 2])(c1)
# Propogate through residual blocks
r = residual_block(c1, self.gf, 0)
for idx in range(1, self.n_residual_blocks):
r = residual_block(r, self.gf, idx)
# Post-residual block
c2 = keras.layers.Conv2D(self.gf, kernel_size=3, strides=1, padding='same')(r)
c2 = keras.layers.BatchNormalization()(c2)
c2 = keras.layers.Add()([c2, c1])
# Upsampling
u1 = deconv2d(c2)
u2 = deconv2d(u1)
# Generate high resolution output
gen_hr = keras.layers.Conv2D(3, kernel_size=3, strides=1, padding='same', activation='tanh')(u2)
return keras.models.Model(img_lr, gen_hr)
def build_discriminator(self):
"""Builds a discriminator network based on the SRGAN design."""
def d_block(layer_input, filters, strides=1, bn=True):
"""Discriminator layer block.
Args:
layer_input: Input feature map for the convolutional block.
filters: Number of filters in the convolution.
strides: The stride of the convolution.
bn: Whether to use batch norm or not.
"""
d = keras.layers.Conv2D(filters, kernel_size=3, strides=strides, padding='same')(layer_input)
if bn:
d = keras.layers.BatchNormalization(momentum=0.8)(d)
d = keras.layers.LeakyReLU(alpha=0.2)(d)
return d
# Input img
d0 = keras.layers.Input(shape=self.hr_shape)
d1 = d_block(d0, self.df, bn=False)
d2 = d_block(d1, self.df, strides=2)
d3 = d_block(d2, self.df)
d4 = d_block(d3, self.df, strides=2)
d5 = d_block(d4, self.df * 2)
d6 = d_block(d5, self.df * 2, strides=2)
d7 = d_block(d6, self.df * 2)
d8 = d_block(d7, self.df * 2, strides=2)
validity = keras.layers.Conv2D(1, kernel_size=1, strides=1, activation='sigmoid', padding='same')(d8)
return keras.models.Model(d0, validity)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment